A145919 A000332(n) = a(n)*(3*a(n) - 1)/2.
0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
Offset: 0
Examples
a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Pentagonal Number.
- Eric Weisstein's World of Mathematics, Pentatope Number.
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Programs
-
Mathematica
CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 13 2017 *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{0,0,0,0,1,2,-3,5,7},60] (* Harvey P. Dale, Feb 13 2023 *)
-
PARI
my(x='x+O('x^50)); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017
Formula
After first two zeros, this sequence consists of all values of A001318(n) and A045943(n)*(-1), n>=0, sorted in order of increasing absolute value.
G.f.: (-x^4*(x^4+2*x^3-3*x^2+2*x+1))/((x-1)^3*(1+x^2+x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = ((n^2-3*n+1)*(1-4*cos(2*Pi*n/3))+3)/18. - Natalia L. Skirrow, Apr 14 2025
Comments