A145963 Decimal expansion of Hypergeometric2F1[1, 1/8, 9/8, 1/16] used in BBP Pi formula.
1, 0, 0, 7, 1, 8, 4, 4, 7, 6, 4, 1, 4, 6, 7, 6, 2, 2, 8, 6, 4, 4, 7, 6, 0, 1, 4, 7, 4, 5, 0, 4, 3, 8, 4, 9, 6, 6, 4, 2, 9, 6, 5, 4, 7, 1, 9, 4, 5, 8, 8, 3, 1, 1, 3, 7, 1, 6, 4, 3, 6, 2, 0, 3, 1, 7, 2, 3, 5, 2, 3, 9, 0, 3, 8, 0, 8, 9, 8, 1, 6, 3, 5, 2, 7, 8, 6, 8, 9, 4, 4, 2, 8, 9, 5, 8, 5, 9, 4, 9
Offset: 1
Examples
1.00718447641467622864476...
Links
- Eric Weisstein's World of Mathematics, BBP Formula.
Programs
-
Mathematica
First[RealDigits[Hypergeometric2F1[1, 1/8, 9/8, 1/16], 10, 100]] N[(1/16) (Pi + 2 Sqrt[2] (2 ArcCoth[Sqrt[2]] + ArcTan[2 Sqrt[2]]) + 2 ArcTan[3/4] + 2 Log[5]), 100] N[Sum[(1/16)^n (1/(8n+1)),{n,0,Infinity}], 100]
-
PARI
suminf(k=0, (1/16)^k / (8*k+1)) \\ Michel Marcus, Jan 16 2021
Formula
Equals Sum_{k>=0} (1/16)^k / (8*k+1).
Comments