cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146162 Expansion of eta(q^2)^2 * eta(q^5) / (eta(q) * eta(q^4)^2) in powers of q.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 0, 2, 4, 3, 0, 3, 8, 4, 0, 6, 14, 8, 0, 10, 22, 12, 0, 16, 36, 21, 0, 25, 56, 30, 0, 38, 84, 48, 0, 57, 126, 68, 0, 84, 184, 102, 0, 121, 264, 143, 0, 172, 376, 207, 0, 243, 528, 284, 0, 338, 732, 400, 0, 465, 1008, 542, 0, 636, 1374, 744, 0, 862, 1856, 996, 0
Offset: 0

Views

Author

Michael Somos, Oct 27 2008

Keywords

Examples

			1 + q + q^3 + 2*q^4 + q^5 + 2*q^7 + 4*q^8 + 3*q^9 + 3*q^11 + 8*q^12 + ...
		

Crossrefs

A138526(n) = a(4*n). A145722(n) = a(4*n + 1). A146163(n) = a(4*n + 3).

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[QPochhammer[x^5]/(QPochhammer[x]* QPochhammer[ -x^2, x^2]^2), {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A)^2), n))}

Formula

Euler transform of period 20 sequence [ 1, -1, 1, 1, 0, -1, 1, 1, 1, -2, 1, 1, 1, -1, 0, 1, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (4/5)^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A146164.
a(4*n + 2) = 0.