cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A146164 Expansion of f(-x^4) * chi(x^5) / f(-x^5) in powers of x where f(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 0, 0, -1, 2, 0, 0, -1, -2, 3, 0, 0, -2, -3, 6, 0, 0, -3, -6, 11, 0, 0, -6, -10, 18, 0, 0, -9, -16, 28, 0, 0, -14, -25, 44, 0, 0, -22, -38, 67, 0, 0, -32, -57, 100, 0, 0, -48, -84, 146, 0, 0, -70, -121, 210, 0, 0, -99, -172, 299, 0, 0, -140, -243, 420, 0
Offset: 0

Views

Author

Michael Somos, Oct 27 2008, Nov 10 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^4 + 2*x^5 - x^8 - 2*x^9 + 3*x^10 - 2*x^13 - 3*x^14 + 6*x^15 + ...
G.f. = 1/q - q^15 + 2*q^19 - q^31 - 2*q^35 + 3*q^39 - 2*q^51 - 3*q^55 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4] QPochhammer[ -x^5, x^10] / QPochhammer[ x^5], {x, 0, n}]; (* Michael Somos, Sep 03 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^10 + A)^2 / (eta(x^5 + A)^2 * eta(x^20 + A)), n))};

Formula

Expansion of q^(1/4) * eta(q^4) * eta(q^10)^2 / (eta(q^5)^2 * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 0, 0, 0, -1, 2, 0, 0, -1, 0, 0, 0, -1, 0, 0, 2, -1, 0, 0, 0, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (5/4)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A146162.
a(5*n + 1) = a(5*n + 2) = 0.
a(n) = A138532(2*n + 1). a(5*n + 4) = - A146163(n).
Convolution inverse of A146165.

Extensions

Edited by N. J. A. Sloane, Nov 21 2008 at the suggestion of R. J. Mathar

A146163 Expansion of q^(-3/4) * eta(q^2)^2 * eta(q^20) / (eta(q)^2 * eta(q^4)) in powers of q.

Original entry on oeis.org

1, 2, 3, 6, 10, 16, 25, 38, 57, 84, 121, 172, 243, 338, 465, 636, 862, 1158, 1546, 2050, 2701, 3540, 4613, 5980, 7719, 9916, 12682, 16158, 20506, 25926, 32667, 41022, 51348, 64080, 79730, 98922, 122407, 151068, 185968, 228384, 279816, 342052
Offset: 0

Views

Author

Michael Somos, Oct 27 2008

Keywords

Examples

			q^3 + 2*q^7 + 3*q^11 + 6*q^15 + 10*q^19 + 16*q^23 + 25*q^27 + 38*q^31 + ...
		

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^2 * (1-x^(20*k)) / (1-x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
    a[n_]:= SeriesCoefficient[QPochhammer[-q, q]^2*QPochhammer[q^20, q^20]/(QPochhammer[q^4, q^4]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 05 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^20 + A) / (eta(x + A)^2 * eta(x^4 + A)), n))}

Formula

Euler transform of period 20 sequence [ 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, ...].
a(n) ~ exp(2*Pi*sqrt(n/5)) / (4*5^(3/4)*n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
a(n) = A146162(4*n + 3).
Showing 1-2 of 2 results.