cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A145708 Expansion of psi(-q) / psi(-q^5) in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 0, 1, 0, 0, -1, 0, 2, 0, 0, -1, 0, 2, -1, 0, -2, 0, 3, -2, 0, -3, 0, 5, -2, 0, -3, 0, 6, -2, 0, -4, 0, 8, -3, 0, -6, 0, 11, -5, 0, -8, 0, 14, -6, 0, -10, 0, 18, -6, 0, -12, 0, 22, -9, 0, -16, 0, 28, -13, 0, -21, 0, 36, -14, 0, -25, 0, 44, -16, 0
Offset: 0

Views

Author

Michael Somos, Oct 17 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - x^3 + x^5 - x^8 + 2*x^10 - x^13 + 2*x^15 - x^16 - 2*x^18 + ...
G.f. = 1/q - q - q^5 + q^9 - q^15 + 2*q^19 - q^25 + 2*q^29 - q^31 - 2*q^35 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(1/2) EllipticTheta[ 2, Pi/4, x^(1/2)] / EllipticTheta[ 2, Pi/4, x^(5/2)], {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A)), n))};

Formula

Expansion of q^(1/2) * eta(q) * eta(q^4) * eta(q^10) / (eta(q^2) * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ -1, 0, -1, -1, 0, 0, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = 5^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A036026.
a(5*n + 2) = a(5*n + 4) = 0.
G.f.: (Product_{k>0} P(5, x^k) * P(20, x^k))^(-1) where P(n, x) is the n-th cyclotomic polynomial.
a(n) = (-1)^n * A138532(n). a(5*n + 3) = - A036026(n).
Convolution square is A145740. Convolution inverse is A036026.
a(n) = A145723(2*n - 1). a(2*n) = A146164(n). a(2*n + 1) = - A147699(n). - Michael Somos, Sep 06 2015

A146162 Expansion of eta(q^2)^2 * eta(q^5) / (eta(q) * eta(q^4)^2) in powers of q.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 0, 2, 4, 3, 0, 3, 8, 4, 0, 6, 14, 8, 0, 10, 22, 12, 0, 16, 36, 21, 0, 25, 56, 30, 0, 38, 84, 48, 0, 57, 126, 68, 0, 84, 184, 102, 0, 121, 264, 143, 0, 172, 376, 207, 0, 243, 528, 284, 0, 338, 732, 400, 0, 465, 1008, 542, 0, 636, 1374, 744, 0, 862, 1856, 996, 0
Offset: 0

Views

Author

Michael Somos, Oct 27 2008

Keywords

Examples

			1 + q + q^3 + 2*q^4 + q^5 + 2*q^7 + 4*q^8 + 3*q^9 + 3*q^11 + 8*q^12 + ...
		

Crossrefs

A138526(n) = a(4*n). A145722(n) = a(4*n + 1). A146163(n) = a(4*n + 3).

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[QPochhammer[x^5]/(QPochhammer[x]* QPochhammer[ -x^2, x^2]^2), {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^5 + A) / (eta(x + A) * eta(x^4 + A)^2), n))}

Formula

Euler transform of period 20 sequence [ 1, -1, 1, 1, 0, -1, 1, 1, 1, -2, 1, 1, 1, -1, 0, 1, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (80 t)) = (4/5)^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A146164.
a(4*n + 2) = 0.

A146165 Expansion of q^(1/4) * eta(q^5)^2 * eta(q^20) / (eta(q^4) * eta(q^10)^2) in powers of q.

Original entry on oeis.org

1, 0, 0, 0, 1, -2, 0, 0, 2, -2, 1, 0, 3, -4, 1, -2, 5, -6, 2, -2, 10, -10, 3, -4, 14, -16, 5, -6, 21, -24, 11, -10, 31, -34, 15, -18, 45, -50, 23, -26, 67, -70, 34, -38, 93, -104, 50, -56, 130, -140, 77, -80, 179, -196, 107, -120, 245, -264, 151, -164, 338, -360, 210, -230, 451, -488, 290, -314, 604, -650, 404
Offset: 0

Views

Author

Michael Somos, Oct 27 2008

Keywords

Examples

			q + q^17 - 2*q^21 + 2*q^33 - 2*q^37 + q^41 + 3*q^49 - 4*q^53 + q^57 + ...
		

Crossrefs

Convolution inverse of A146164.

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^5]^2*(QP[q^20]/(QP[q^4]*QP[q^10]^2)) + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^2 * eta(x^20 + A) / (eta(x^4 + A) * eta(x^10 + A)^2), n))}

Formula

Euler transform of period 20 sequence [ 0, 0, 0, 1, -2, 0, 0, 1, 0, 0, 0, 1, 0, 0, -2, 1, 0, 0, 0, 0, ...].
Showing 1-3 of 3 results.