cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146289 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001221(n)), giving the number of divisors of n with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 3, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the n-th row (see below) also gives the number of divisors of the k-th power of n.
Two numbers have identical rows in the table if and only if they have the same prime signature.
T(n,0)=1.

Examples

			Rows begin:
1;
1,1;
1,1;
1,2;
1,1;
1,2,1;
1,1;
1,3;
1,2;
1,2,1;
...
12 has 1 divisor with 0 distinct prime factors (1); 3 with 1 (2, 3 and 4); and 2 with 2 (6 and 12), for a total of 6. The 12th row of the table therefore reads (1, 3, 2). These are the positive coefficients of the polynomial equation 1 + 3k + 2k^2 = (1 + 2k)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
		

Crossrefs

Row sums equal A000005(n).
T(n, 1) = A001222(n) for n>1. T(n, A001221(n)) = A005361(n).
Row n of A007318 is identical to row A002110(n) of this table and also identical to the row for any squarefree number with n prime factors.
Cf. A146290. Also cf. A146291, A146292.

Programs

  • Maple
    f:= proc(n)
       local F,G,f,t,k;
       F:= ifactors(n)[2];
       G:= mul(1+f[2]*t, f= F);
       seq(coeff(G,t,k),k=0..nops(F));
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Feb 10 2015
  • Mathematica
    Join[{{1}}, Table[nn = DivisorSigma[0, n];CoefficientList[Series[Product[1 + i x, {i, FactorInteger[n][[All, 2]]}], {x, 0,nn}], x], {n, 2, 100}]] // Grid (* Geoffrey Critzer, Feb 09 2015 *)
  • PARI
    tabf(nn) = {for (n=1, nn, vd = divisors(n); vo = vector(#vd, k, omega(vd[k])); for (k=0, vecmax(vo), print1(#select(x->x==k, vo), ", ");); print(););} \\ Michel Marcus, Apr 22 2017

Formula

If the canonical factorization of n into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + e(p) k).