A146289 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001221(n)), giving the number of divisors of n with m distinct prime factors.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 4, 3, 1, 1, 1, 3, 3
Offset: 1
Examples
Rows begin: 1; 1,1; 1,1; 1,2; 1,1; 1,2,1; 1,1; 1,3; 1,2; 1,2,1; ... 12 has 1 divisor with 0 distinct prime factors (1); 3 with 1 (2, 3 and 4); and 2 with 2 (6 and 12), for a total of 6. The 12th row of the table therefore reads (1, 3, 2). These are the positive coefficients of the polynomial equation 1 + 3k + 2k^2 = (1 + 2k)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
Links
- G. C. Greubel, Table of n, a(n) for the first 500 rows, flattened
- Anonymous?, Polynomial calculator
- Eric Weisstein's World of Mathematics, Distinct Prime Factors
- G. Xiao, WIMS server, Factoris (both expands and factors polynomials)
Crossrefs
Programs
-
Maple
f:= proc(n) local F,G,f,t,k; F:= ifactors(n)[2]; G:= mul(1+f[2]*t, f= F); seq(coeff(G,t,k),k=0..nops(F)); end proc: seq(f(n),n=1..100); # Robert Israel, Feb 10 2015
-
Mathematica
Join[{{1}}, Table[nn = DivisorSigma[0, n];CoefficientList[Series[Product[1 + i x, {i, FactorInteger[n][[All, 2]]}], {x, 0,nn}], x], {n, 2, 100}]] // Grid (* Geoffrey Critzer, Feb 09 2015 *)
-
PARI
tabf(nn) = {for (n=1, nn, vd = divisors(n); vo = vector(#vd, k, omega(vd[k])); for (k=0, vecmax(vo), print1(#select(x->x==k, vo), ", ");); print(););} \\ Michel Marcus, Apr 22 2017
Formula
If the canonical factorization of n into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + e(p) k).
Comments