A146302 a(n) = (8*n+5)*(8*n+9).
45, 221, 525, 957, 1517, 2205, 3021, 3965, 5037, 6237, 7565, 9021, 10605, 12317, 14157, 16125, 18221, 20445, 22797, 25277, 27885, 30621, 33485, 36477, 39597, 42845, 46221, 49725, 53357, 57117, 61005, 65021, 69165, 73437, 77837, 82365
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq((8*m+5)*(8*m+9),m=0..40); # Miklos Kristof, Nov 03 2008
-
Mathematica
Table[(8n+5)(8n+9),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{45,221,525},40] (* Harvey P. Dale, Oct 10 2015 *)
-
PARI
a(n)=(8*n+5)*(8*n+9) \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f: (45 + 86*x - 3*x^2)/(1-x)^3.
E.g.f.: (45 + 176*x + 64*x^2)*exp(x).
Comments