cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146302 a(n) = (8*n+5)*(8*n+9).

Original entry on oeis.org

45, 221, 525, 957, 1517, 2205, 3021, 3965, 5037, 6237, 7565, 9021, 10605, 12317, 14157, 16125, 18221, 20445, 22797, 25277, 27885, 30621, 33485, 36477, 39597, 42845, 46221, 49725, 53357, 57117, 61005, 65021, 69165, 73437, 77837, 82365
Offset: 0

Views

Author

Miklos Kristof, Oct 29 2008

Keywords

Comments

From Miklos Kristof, Nov 03 2008: (Start)
f(y) = y^4*(1 + y^4) = y^4 - y^8 + y^12 - y^16 + y^20 - y^24 + ...
Integral_{y} f(y) dy = y^5/5 - y^9/9 + y^13/13 - y^17/17 + y^21/21 - y^25/25 + ...
Integral_{y=0..1} f(y) dy = 1/5 - 1/9 + 1/13 - 1/17 + 1/21 - 1/25 + ...
= (9 - 5)/(5*9) + (17 - 13)/(13*17) + (25 - 21)/(21*25) + ...
= 4/(5*9) + 4/(13*17) + 4/(21*25) + ...
Integral_{y=0..1} f(y) dy = Sum_{m>=0} 4/((8*m+5)*(8*m+9))
= -(1/8)*sqrt(2)*Pi + 1 - (1/4)*sqrt(2)*log(1+sqrt(2))
= 0.13302701266008896241... (End)

Programs

  • Maple
    seq((8*m+5)*(8*m+9),m=0..40); # Miklos Kristof, Nov 03 2008
  • Mathematica
    Table[(8n+5)(8n+9),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{45,221,525},40] (* Harvey P. Dale, Oct 10 2015 *)
  • PARI
    a(n)=(8*n+5)*(8*n+9) \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f: (45 + 86*x - 3*x^2)/(1-x)^3.
E.g.f.: (45 + 176*x + 64*x^2)*exp(x).
a(n) = A004770(n) * A004768(n). - Reinhard Zumkeller, Oct 30 2008