A146311 a(n) = cos(2*n*arcsin(sqrt(3))) = (-1)^n*cosh(2*n*arcsinh(sqrt(2))).
1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085, 416483346590304049
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-10,-1).
Crossrefs
Cf. A001079.
Programs
-
Mathematica
Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] CoefficientList[Series[(5*x + 1)/(x^2 + 10*x + 1), {x,0,50}], x] (* G. C. Greubel, Jul 02 2017 *)
-
PARI
Vec((5*x+1)/(x^2+10*x+1) + O(x^100)) \\ Colin Barker, Oct 26 2014
Formula
a(n) = (-1)^n * A001079(n).
From Colin Barker, Oct 26 2014: (Start)
a(n) = ((-5-2*sqrt(6))^n + (-5+2*sqrt(6))^n)/2.
a(n) = -10*a(n-1)-a(n-2).
G.f.: (5*x+1) / (x^2+10*x+1). (End)
E.g.f.: exp(-5*x)*cosh(2*sqrt(6)*x). - Stefano Spezia, Feb 14 2025
Extensions
a(18) from Colin Barker, Oct 26 2014
Comments