cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146333 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 8.

Original entry on oeis.org

31, 40, 46, 71, 76, 88, 91, 92, 96, 104, 108, 152, 153, 155, 176, 188, 192, 200, 206, 207, 234, 238, 261, 266, 276, 279, 280, 282, 320, 328, 335, 336, 348, 366, 378, 383, 386, 392, 408, 414, 450, 476, 477, 480, 488, 501, 503, 504, 505, 540, 542, 555, 558, 581
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146353.

Examples

			a(1) = 31 because continued fraction of (1+sqrt(31))/2 = 3, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, 1, 3, 5, 3, 1, 1, 10, 1, ... has period (3, 1, 1, 10, 1, 1, 3, 5) length 8.
		

Crossrefs

Programs

  • Maple
    A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic','quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146333 := proc(n) RETURN(A146326(n) = 8) ; end: for n from 2 to 700 do if isA146333(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 06 2009
  • Mathematica
    cf8Q[n_]:=Module[{sqrt=Sqrt[n]},!IntegerQ[sqrt]&&Length[ ContinuedFraction[ (1+sqrt)/2][[2]]]==8]; Select[Range[600],cf8Q] (* Harvey P. Dale, Sep 06 2012 *)

Extensions

155 and 279 etc. added, 311 etc. removed by R. J. Mathar, Sep 06 2009