cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146337 Numbers k such that continued fraction of (1 + sqrt(k))/2 has period 14.

Original entry on oeis.org

118, 154, 179, 201, 212, 244, 251, 262, 286, 292, 307, 340, 347, 388, 403, 418, 422, 430, 467, 471, 474, 494, 497, 500, 519, 543, 548, 566, 587, 594, 598, 670, 683, 687, 692, 698, 699, 703, 713, 722, 742, 745, 754, 831, 833, 847, 873, 879, 932, 939, 945
Offset: 1

Views

Author

Artur Jasinski, Oct 30 2008

Keywords

Comments

For primes in this sequence see A146359.

Examples

			a(1) = 421 because continued fraction of (1+sqrt(421))/2 = 17, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13, 5, 3, 1, 1, 1, 2, 26... has period (5, 3, 1, 1, 1, 2, 26, 2, 1, 1, 1, 3, 5, 13) length 14.
		

Crossrefs

Programs

  • Maple
    A := proc(n) option remember ; local c; try c := numtheory[cfrac](1/2+sqrt(n)/2,'periodic','quotients') ; RETURN(nops(c[2]) ); catch: RETURN(-1) end try ; end: isA146337 := proc(n) if A(n) = 14 then RETURN(true); else RETURN(false); fi; end: for k from 1 do if isA146337(k) then printf("%d, ",k) ; fi; od: # R. J. Mathar, Nov 08 2008
  • Mathematica
    cf14Q[n_]:=Module[{s=(1+Sqrt[n])/2},!IntegerQ[s]&&Length[ ContinuedFraction[ s][[2]]] == 14]; Select[Range[1000],cf14Q] (* Harvey P. Dale, Oct 15 2015 *)

Extensions

More terms from R. J. Mathar, Nov 08 2008