A085538 a(n) = n^5 - n^4.
0, 0, 16, 162, 768, 2500, 6480, 14406, 28672, 52488, 90000, 146410, 228096, 342732, 499408, 708750, 983040, 1336336, 1784592, 2345778, 3040000, 3889620, 4919376, 6156502, 7630848, 9375000, 11424400, 13817466, 16595712, 19803868, 23490000, 27705630, 32505856
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[n^5-n^4: n in [0..50]]; // Vincenzo Librandi, Feb 12 2012
-
Maple
a:=n->sum(sum(n^3, j=1..n),k=2..n): seq(a(n), n=0..31); # Zerinvary Lajos, May 09 2007
-
Mathematica
Table[n^5 - n^4, {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 16, 162, 768, 2500}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
-
PARI
a(n)=n^5-n^4 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: 2*x^2*(x^3 + 18*x^2 + 33*x + 8)/(x-1)^6. - Colin Barker, Nov 06 2012
Sum_{n>=2} 1/a(n) = 4 - zeta(2) - zeta(3) - zeta(4). - Amiram Eldar, Jul 05 2020
Product_{n>=2} (1 - 1/a(n)) = A146492. - Amiram Eldar, Nov 22 2022
Comments