A146523 Binomial transform of A010685.
1, 5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2).
Programs
-
Mathematica
CoefficientList[Series[(1+3x)/(1-2x), {x,0,50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *) Join[{1}, 5*2^(Range[40] -1)] (* G. C. Greubel, Nov 23 2021 *)
-
PARI
a(n)=if(n,5<<(n-1),1) \\ Charles R Greathouse IV, Jan 17 2012
-
Sage
[1]+[5*2^(n-1) for n in (1..50)] # G. C. Greubel, Nov 23 2021
Formula
a(n) = 5*2^(n-1) for n >= 1, a(0) = 1.
G.f.: (1 + 3*x)/(1 - 2*x). - Vladimir Joseph Stephan Orlovsky, Jun 21 2011
G.f.: G(0), where G(k)= 1 + 3*x/(1 - 2*x/(2*x + 3*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
E.g.f.: (5*exp(2*x) - 3)/2. - Stefano Spezia, Feb 20 2023
Comments