A146557 Number of collinear triples of distinct points in Zn x Zn with no two on the same "horizontal" or "vertical" line.
0, 0, 6, 32, 200, 384, 1470, 2688, 5400, 9600, 18150, 27168, 44616, 65856, 90150, 140800, 184960, 274320, 331398, 474400, 569184, 774400, 896126, 1366656, 1390000, 1881984, 2204982, 2899232, 2967048, 4545600, 4180350, 5904384
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := n*Sum[ Sum[ (n - i - j)*( n*GCD[i, j, n - i - j] - GCD[i, n] - GCD[j, n] - GCD[i + j, n] + 2 ) , {j, 1, n - i}] , {i, 1, n}]; Table[f[n], {n,1,25}] (* G. C. Greubel, Oct 18 2016 *)
-
PARI
{ a(n) = n * sum(i=1,n, sum(j=1,n-i, (n-i-j) * (n*gcd([i,j,n-i-j]) - gcd(i,n) - gcd(j,n) - gcd(i+j,n) + 2) )) }
Formula
a(n) = n * Sum_{i,j,k} ( n * gcd(i,j,k) - gcd(i,n) - gcd(j,n) - gcd(k,n) + 2 ) * k, where the sum is taken over all triples of positive integers i,j,k with i+j+k=n.
Comments