cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A146884 a(n) = 7*Sum_{k=0..n} 6^k.

Original entry on oeis.org

7, 49, 301, 1813, 10885, 65317, 391909, 2351461, 14108773, 84652645, 507915877, 3047495269, 18284971621, 109709829733, 658258978405, 3949553870437, 23697323222629, 142183939335781, 853103636014693, 5118621816088165
Offset: 0

Views

Author

Roger L. Bagula, Nov 02 2008

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 7^n else 7*Self(n-1) -6*Self(n-2): n in [1..31]]; // G. C. Greubel, Oct 12 2022
    
  • Mathematica
    a[n_]:= Sum[7*6^m, {m,0,n}]; Table[a[n], {n,0,30}]
    Accumulate[7*6^Range[0,20]] (* Harvey P. Dale, Dec 18 2021 *)
  • SageMath
    [(7/5)*(6^(n+1)-1) for n in range(41)] # G. C. Greubel, Oct 12 2022

Formula

From G. C. Greubel, Oct 12 2022: (Start)
a(n) = (7/5)*(6^(n+1) - 1).
a(n) = 7*A003464(n+1).
a(n) = 7*a(n-1) - 6*a(n-2).
G.f.: 7/((1-x)*(1-6*x)).
E.g.f.: (7/5)*(6*exp(6*x) - exp(x)). (End)