cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A120960 Pythagorean prime powers.

Original entry on oeis.org

5, 13, 17, 25, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 125, 137, 149, 157, 169, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 289, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593
Offset: 1

Views

Author

Lekraj Beedassy, Jul 19 2006

Keywords

Comments

1 + sum of the indices of the first two numbers in A001844 that are divisible by n, if 1 + the sum of those indices equals n. - Mats Granvik, Oct 16 2007
R. J. Turyn proved [Baliga, et al., p. 129, gives the reference] that Williamson Hadamard matrices exist for 4t = 2(p^k + 1), for all primes p such that p == 1 (mod 4). - L. Edson Jeffery, Apr 10 2012
A024362(a(n)) = 1. - Reinhard Zumkeller, Dec 02 2012

Examples

			A001844(1) = 5 is divisible by 5, A001844(3) = 25 is divisible by = 5 and 1+3+1=5, so 5 is a member.
A001844(2) = 13 is divisible by = 13, A001844(10) = 221 is divisible by = 13 and 2+10+1=13 so 13 is a member.
		

Crossrefs

Cf. Disjoint union of A002144 and A146945.
Cf. A001844, subsequence of A000961.
Cf. A024409, subsequence of A008846.

Programs

  • Excel
    Generate the indices with: =if(mod(1+2*row()*(row()+1);4*column()+1)=0;row();") Then sum the first two indices if it equals the column + 1. - Mats Granvik, Oct 16 2007
    
  • Haskell
    import Data.List (elemIndices)
    a120960 n = a120960_list !! (n-1)
    a120960_list = map (+ 1) $ elemIndices 1 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012

A369563 Powerful numbers whose prime factors are all of the form 4*k + 1.

Original entry on oeis.org

1, 25, 125, 169, 289, 625, 841, 1369, 1681, 2197, 2809, 3125, 3721, 4225, 4913, 5329, 7225, 7921, 9409, 10201, 11881, 12769, 15625, 18769, 21025, 21125, 22201, 24389, 24649, 28561, 29929, 32761, 34225, 36125, 37249, 38809, 42025, 48841, 50653, 52441, 54289, 54925
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004613.
Subsequence: A146945.
Similar sequence: A352492, A369564, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 1 && Last[#] > 1 &]; Select[Range[50000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 1 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 1 (mod 4)} (1 + 1/(p*(p-1))) = A175647 * A334424 = 1.0654356335... .

A120961 Composite hypotenuses of primitive Pythagorean triangles.

Original entry on oeis.org

25, 65, 85, 125, 145, 169, 185, 205, 221, 265, 289, 305, 325, 365, 377, 425, 445, 481, 485, 493, 505, 533, 545, 565, 625, 629, 685, 689, 697, 725, 745, 785, 793, 841, 845, 865, 901, 905, 925, 949, 965, 985, 1025, 1037, 1073, 1105, 1145, 1157, 1165, 1189, 1205
Offset: 1

Views

Author

Lekraj Beedassy, Jul 19 2006

Keywords

Comments

Composite entries of A008846. Disjoint union of A024409 and A146945.

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[ If[ GCD[m, n] == 1, a = 2 m*n; b = m^2 - n^2; c = m^2 + n^2; If[ !PrimeQ@c, AppendTo[lst, c]]], {m, 3, 300}, {n, If[ OddQ@m, 2, 1], m - 1, 2}]; Take[ Union@ lst, 51] (* Robert G. Wilson v, May 02 2009 *)

Extensions

Term 485, which satisfies 485^2 = 476^2 + 93^2, added by Robert G. Wilson v, May 02 2009

A159781 Values of hypotenuse of primitive Pythagorean triples which can have four different shapes (that is, four different sets of "legs").

Original entry on oeis.org

1105, 1885, 2405, 2465, 2665, 3145, 3445, 3485, 3965, 4505, 4745, 5185, 5365, 5525, 5785, 5945, 6205, 6305, 6409, 6565, 7085, 7345, 7565, 7585, 7685, 8177, 8245, 8585, 8845, 8905, 9061, 9265, 9425, 9605, 9685, 9805, 10205, 10585, 10865
Offset: 1

Views

Author

John T. Harrison (harrison_uk_2000(AT)yahoo.co.uk), Apr 22 2009

Keywords

Comments

This is a subsequence of A024409, which lists hypotenuse values common to more than one primitive Pythagorean triple. A024409(1) = A006278(2) = 65 is the smallest hypotenuse common to exactly two primitive Pythagorean triples; a(1) = A006278(3) = 1105 is the smallest that is common to four. [edited by Jon E. Schoenfield, Aug 19 2018]
A024362(a(n)) = 4. - Reinhard Zumkeller, Dec 02 2012

Crossrefs

Cf. A024409 and A146945.
Cf. A006278 (8, 16, etc. shapes). - R. J. Mathar, Apr 12 2010

Programs

  • Haskell
    import Data.List (elemIndices)
    a159781 n = a159781_list !! (n-1)
    a159781_list = map (+ 1) $ elemIndices 4 a024362_list
    -- Reinhard Zumkeller, Dec 02 2012
  • Mathematica
    f[c_] := f[c] = Block[{a = 1, b, cnt = 0, lmt = Floor[Sqrt[c^2/2]]}, While[b = Sqrt[c^2 - a^2]; a < lmt, If[IntegerQ@ b && GCD[a, b, c] == 1, cnt++]; a++]; cnt]Select[1 + 4 Range[2800], f@# > 2 &] (* Robert G. Wilson v, Mar 16 2014 *)

Extensions

6429 replaced by 6409 and 3 terms added by R. J. Mathar, Apr 12 2010
Missing 8585 and 8845 inserted by Reinhard Zumkeller, Dec 02 2012
Showing 1-4 of 4 results.