A146951 Numbers that are congruent to 0 or 6 mod 10.
0, 6, 10, 16, 20, 26, 30, 36, 40, 46, 50, 56, 60, 66, 70, 76, 80, 86, 90, 96, 100, 106, 110, 116, 120, 126, 130, 136, 140, 146, 150, 156, 160, 166, 170, 176, 180, 186, 190, 196, 200, 206, 210, 216, 220, 226, 230, 236, 240, 246, 250, 256, 260, 266, 270, 276, 280
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
I:=[0, 6, 10]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, May 18 2012
-
Mathematica
CoefficientList[Series[x*(6+4*x)/((1-x)^2*(1+x)),{x,0,50}],x] (* Vincenzo Librandi, May 18 2012 *)
Formula
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k) = 5*2^k = A020714(k) for k > 0. - Philippe Deléham, Oct 18 2011
From Colin Barker, May 15 2012: (Start)
a(n) = 1/2 - (-1)^n/2 + 5*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(6+4*x)/((1-x)^2*(1+x)). (End)
E.g.f.: 5*x*exp(x) + sinh(x). - Stefano Spezia, May 14 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/8 - sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Sep 15 2022
Extensions
Replaced definition by a comment from Philippe Deléham, Oct 18 2011. Afer the change this becomes a list, but it is better to keep the offset as 0. - N. J. A. Sloane, Sep 08 2022
Comments