A146961 Numbers k = p*q*r, with odd primes p < q < r, such that Sister Beiter's cyclotomic coefficient conjecture is false.
20213, 125609, 136477, 141317, 150271, 198493, 199177, 212971, 239039, 273229, 282367, 291343, 311201, 332777, 373901, 393313, 398563, 412357, 442091, 449527, 449647, 450131, 456569, 461263, 469249, 470741, 475057, 522461, 524837, 532363
Offset: 1
Keywords
Links
- Robin Visser, Table of n, a(n) for n = 1..200
- A. S. Bang, Om Ligningen phi_n(x) = 0, Nyt tidsskrift for matematik, Vol. 6, Afdeling B (1895), pp. 6-12 (7 pages).
- Yves Gallot and Pieter Moree, Counter-examples to Sister Beiter's cyclotomic coefficient conjecture, MPIM Preprint Series 2007 (141).
- Nathan Kaplan, Flat cyclotomic polynomials of order three, Journal of Number Theory, Volume 127, Issue 1, November 2007, Pages 118-126.
- G. S. Kazandzidis, On the cyclotomic polynomial: Coefficients, Bull. Soc. Math. Gr`ece (N.S.) 4 (1963), no. 1, 1-11.
- Carlo Sanna, A Survey on Coefficients of Cyclotomic Polynomials, arXiv:2111.04034 [math.NT], 2021.
- Wikipedia, Marion Beiter.
Crossrefs
Subsequence of A046389.
Programs
-
PARI
isok(m) = if ((m%2) && (bigomega(m)==3) && (omega(m)==3), my(p=vecmin(factor(m)[,1])); vecmax(apply(abs, Vec(polcyclo(m)))) > (p+1)/2;); \\ Michel Marcus, Jan 16 2023
-
Sage
from sage.rings.polynomial.cyclotomic import cyclotomic_coeffs for n in range(3, 100000, 2): pqr = Integer(n).prime_factors() if (len(pqr) == 3) and (product(pqr) == n): coeffs = cyclotomic_coeffs(n, sparse=False) max_coeff = max(abs(c) for c in coeffs) if (max_coeff > (pqr[0]+1)//2): print(n) # Robin Visser, Aug 17 2023
Comments