cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147304 a(n) = Sum_{k=1..prime(n)^2-1} binomial(2k,k).

Original entry on oeis.org

28, 17576, 43308802158650, 8610524734277600186228691452, 121374542758943982922417964798154019940274699584207321286055873543631298, 8126392396649531937838689708830356413772063825711016912849229977138431439363305375418692100492504264
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2k,k],{k,Prime[n]^2-1}],{n,7}] (* Harvey P. Dale, Dec 26 2014 *)
  • PARI
    a(n) = sum(k=1, prime(n)^2-1, binomial(2*k,k)); \\ Michel Marcus, Jul 07 2018

A147291 a(n) = Sum_{k=1..n^2-1} binomial(2k,k).

Original entry on oeis.org

0, 28, 17576, 209295260, 43308802158650, 150315393336149895056, 8610524734277600186228691452, 8068213695203463278728832778415607708, 122985780058082302876789680971972469134558550878, 30386103720799858392019761983012781659021124133753353112778
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k], {k, 1, n^2 - 1}], {n, 1, 10}] (* Vaclav Kotesovec, Jun 07 2019 *)
  • PARI
    a(n) = sum(k=1, n^2-1, binomial(2*k,k)); \\ Michel Marcus, Jul 05 2018

Formula

a(n) ~ 4^(n^2) / (3*sqrt(Pi)*n). - Vaclav Kotesovec, Jun 07 2019
Showing 1-2 of 2 results.