cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147291 a(n) = Sum_{k=1..n^2-1} binomial(2k,k).

Original entry on oeis.org

0, 28, 17576, 209295260, 43308802158650, 150315393336149895056, 8610524734277600186228691452, 8068213695203463278728832778415607708, 122985780058082302876789680971972469134558550878, 30386103720799858392019761983012781659021124133753353112778
Offset: 1

Views

Author

N. J. A. Sloane, Apr 25 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k, k], {k, 1, n^2 - 1}], {n, 1, 10}] (* Vaclav Kotesovec, Jun 07 2019 *)
  • PARI
    a(n) = sum(k=1, n^2-1, binomial(2*k,k)); \\ Michel Marcus, Jul 05 2018

Formula

a(n) ~ 4^(n^2) / (3*sqrt(Pi)*n). - Vaclav Kotesovec, Jun 07 2019

A147303 Numbers k where records occur in expression Log[A147298(k)]/Log[k] k=2,3,4,...

Original entry on oeis.org

2, 3, 6, 7, 14, 15, 22, 30, 42, 62, 66, 70, 78, 102, 114, 158, 166, 182, 186, 210, 222, 230, 255, 258, 282, 318, 330, 402, 430, 438, 462, 470, 474, 494, 498, 510, 570, 582, 598, 690, 710, 786, 798, 822, 870, 906, 930, 942, 1002, 1038, 1074, 1110, 1122, 1146, 1158
Offset: 1

Views

Author

Artur Jasinski, Nov 06 2008

Keywords

Comments

Limit k->Infinity Log[A147298(k)]/Log[k] = 2.
Values m for which records occur, see A147301.

Crossrefs

Programs

  • Mathematica
    logmin = 10^10; logmax = 0; aa = {}; bb = {}; cc = {}; dd = {}; ee = {}; ff = {}; hh = {}; ii = {}; jj = {}; Do[min = 10^100; max = 0; Do[If[GCD[m, n, n - m] == 1, s = m n (n - m); k = FactorInteger[s]; g = 1; Do[g = g k[[p]][[1]], {p, 1, Length[k]}]; If[g > max, max = g; mmax = m]; If[g < min, min = g; mmin = m]], {m, 1, n - 1}]; AppendTo[aa, min]; If[(Log[n]/Log[min]) > logmax, logmax = (Log[n]/Log[min]); AppendTo[ee, {N[logmax], n, mmin, min, mmax, max}]; AppendTo[ff, n]]; If[(Log[n]/Log[min]) < logmin, logmin = (Log[n]/Log[min]); AppendTo[hh, {N[logmin], n, mmin, min, mmax, max}]; AppendTo[ii, n]]; AppendTo[bb, max]; AppendTo[dd, mmin], {n, 2, 1200}]; ii
Showing 1-2 of 2 results.