A146987 Triangle, read by rows, T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 3^(n-1)*binomial(n-2, k -1) otherwise.
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 31, 60, 31, 1, 1, 86, 253, 253, 86, 1, 1, 249, 987, 1478, 987, 249, 1, 1, 736, 3666, 7325, 7325, 3666, 736, 1, 1, 2195, 13150, 32861, 43810, 32861, 13150, 2195, 1, 1, 6570, 45963, 137865, 229761, 229761, 137865, 45963, 6570, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 5, 1; 1, 12, 12, 1; 1, 31, 60, 31, 1; 1, 86, 253, 253, 86, 1; 1, 249, 987, 1478, 987, 249, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Cf. A028262.
Programs
-
GAP
T:= function(n,k,q) if n<2 then return Binomial(n,k); else return Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1); fi; end; Flat(List([0..10], n-> List([0..n], k-> T(n,k,3) ))); # G. C. Greubel, Jan 09 2020
-
Magma
T:= func< n,k,q | n lt 2 select Binomial(n,k) else Binomial(n,k) + q^(n-1)*Binomial(n-2,k-1) >; [T(n,k,3): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 09 2020
-
Maple
q:=3; seq(seq( `if`(n<2, binomial(n,k), binomial(n,k) + q^(n-1)*binomial(n-2,k-1)), k=0..n), n=0..10); # G. C. Greubel, Jan 09 2020
-
Mathematica
Table[If[n<2, Binomial[n, m], Binomial[n, m] + 3^(n-1)*Binomial[n-2, m-1]], {n, 0, 10}, {m, 0, n}]//Flatten
-
PARI
T(n,k) = if(n<2, binomial(n,k), binomial(n,k) + 3^(n-1)*binomial(n-2,k-1) ); \\ G. C. Greubel, Jan 09 2020
-
Sage
@CachedFunction def T(n, k, q): if (n<2): return binomial(n,k) else: return binomial(n,k) + q^(n-1)*binomial(n-2,k-1) [[T(n, k, 3) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 09 2020
Formula
T(n, k) = binomial(n, k) for n < 2 and binomial(n, k) + 3^(n-1)*binomial(n-2, k -1) otherwise.
Extensions
Edited by G. C. Greubel, Jan 09 2020
Comments