A146994 a(n) = (n+1)^2/4 + (floor((n+5)/6) - 1/4) * ((n+1) mod 2).
1, 3, 4, 7, 9, 13, 16, 22, 25, 32, 36, 44, 49, 59, 64, 75, 81, 93, 100, 114, 121, 136, 144, 160, 169, 187, 196, 215, 225, 245, 256, 278, 289, 312, 324, 348, 361, 387, 400, 427, 441, 469, 484, 514, 529, 560, 576, 608, 625, 659, 676, 711, 729, 765, 784, 822, 841
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- T. Mansour, Pattern Avoidance in Coloured Permutations, Séminaire Lotharingien de Combinatoire, 46, 2001.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,1,-1,-1,1).
Programs
-
Magma
[(n mod 2) eq 0 select n*(n+2)/4 + Floor((n+5)/6) else (n+1)^2/4: n in [1..60]]; // G. C. Greubel, Jan 09 2020
-
Maple
a := n -> `if`(irem(n,2)=1,(n+1)^2/4, ((n+1)^2-1)/4 + floor((n+5)/6)): seq(a(n), n=1..57); # Peter Luschny, Feb 01 2015
-
Mathematica
LinearRecurrence[{1,1,-1,0,0,1,-1,-1,1},{1,3,4,7,9,13,16,22,25},60] (* Harvey P. Dale, Dec 17 2012 *) Table[If[EvenQ[n], n*(n+2)/4 + Floor[(n+5)/6], (n+1)^2/4], {n, 60}] (* G. C. Greubel, Jan 09 2020 *)
-
PARI
a(n) = if(n%2==0, n*(n+2)/4 + (n+5)\6, (n+1)^2/4); vector(60, n, a(n)) \\ G. C. Greubel, Jan 09 2020
-
Sage
def a(n): if (mod(n,2)==0): return n*(n+2)/4 + floor((n+5)/6) else: return (n+1)^2/4 [a(n) for n in (1..60)] # G. C. Greubel, Jan 09 2020
Formula
a(2*n-1) = n^2 for n >= 1.
a(2*n) = n*(n+1) + floor((2*n+5)/6) for n >= 0.
From R. J. Mathar, Nov 21 2008: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9).
G.f.: x*(1 + 2*x + x^3 + x^4 + x^5)/((1 + x + x^2)*(1 - x + x^2)*(1+x)^2*(1-x)^3). (End)
Extensions
More terms from R. J. Mathar, Nov 21 2008
Name corrected and partial edit by Peter Luschny, Feb 01 2015
Comments