cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147296 a(n) = n*(9*n+2).

Original entry on oeis.org

0, 11, 40, 87, 152, 235, 336, 455, 592, 747, 920, 1111, 1320, 1547, 1792, 2055, 2336, 2635, 2952, 3287, 3640, 4011, 4400, 4807, 5232, 5675, 6136, 6615, 7112, 7627, 8160, 8711, 9280, 9867, 10472, 11095, 11736, 12395, 13072, 13767, 14480, 15211, 15960
Offset: 0

Views

Author

Paul Curtz, Nov 05 2008

Keywords

Comments

For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n; {1, 1, 1, 3n-1, 1, 1, 1, 12n}]. - Magus K. Chu, Sep 17 2022

Crossrefs

Equals first 9-fold decimation of A144454.

Programs

  • Mathematica
    Table[n(9n+2),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,40},50] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    A147296(n) = n*(9*n + 2) \\ M. F. Hasler, Mar 01 2009

Formula

a(n) = n*(9*n + 2), as conjectured by V. Librandi. - M. F. Hasler, Mar 01 2009
G.f.: x*(11+7*x)/(1-x)^3. - Jaume Oliver Lafont, Aug 30 2009
a(n) = floor((3*n + 1/3)^2). - Reinhard Zumkeller, Apr 14 2010
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(11 + 9*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from M. F. Hasler, Mar 01 2009