A147307 Numbers A of the constrained search for ABC records described in A147306.
1, 1, 1, 1, 1, 1, 5, 19, 41, 125, 23, 1, 1, 1, 95
Offset: 1
Extensions
Edited by R. J. Mathar, Aug 24 2009
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
(A,B,C) = (1,5,6) defines the first record, L=0.5268.. (A,B,C)=(1,11,12) reaches L=0.5931.. (A,B,C) = (1,17,18) reaches L=0.6249.. The first C-number selected from A033845 that does not generate a new record is 72.
Digits := 120 : A007947 := proc(n) local f,p; f := ifactors(n)[2] ; mul( op(1,p),p=f) ; end: L := proc(A,B,C) local rad; rad := A007947(A*B*C) ; evalf(log(C)/log(rad)) ; end: isA033845 := proc(n) local f,p; f := ifactors(n)[2] ; for p in f do if not op(1,p) in {2,3} then RETURN(false) ; fi; od: RETURN( (n mod 2 = 0 ) and (n mod 3 = 0 ) ) ; end: crek := -1 : for C from 3 do if isA033845(C) then for A from 1 to C/2 do B := C-A ; if gcd(A,B) = 1 then l := L(A,B,C) ; if l > crek then print(C) ; crek := l ; fi; fi; od: fi; od: # R. J. Mathar, Aug 24 2009
aa = {1}; bb = {1}; rr = {}; Do[logmax = 0; k = 2^x; w = Floor[(k - 1)/2]; Do[m = FactorInteger[n (k - n)]; rad = 1; Do[rad = rad m[[s]][[1]], {s, 1, Length[m]}]; log = Log[k]/Log[rad]; If[log > logmax, bmin = k - n; amax = n; logmax = log; r = rad], {n, 1, w, 2}]; Print[{x, amax}]; AppendTo[aa, amax]; AppendTo[bb, bmin]; AppendTo[rr, r]; AppendTo[a, {x, logmax}], {x, 2, 15}]; bb (* Artur Jasinski with assistance of M. F. Hasler *)
Comments