cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147527 Numbers k such that there exists x in N : (x + 103)^3 - x^3 = k^2.

Original entry on oeis.org

93645643, 12024611022569890927, 1544025601332411913276450522087, 198261303679194296628699373223979621125203, 25457832112792289938442435570354101121237746019778883, 3268924413670798537740342016261657034171968745307560952072318967
Offset: 1

Views

Author

Richard Choulet, Nov 06 2008

Keywords

Examples

			a(1)=93645643 because the first relation is (5327263 + 103)^3 - 5327263^3 = 93645643^2.
		

Crossrefs

Programs

  • GAP
    a:=[93645643, 12024611022569890927];; for n in [3..20] do a[n]:=128405450990*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 10 2020
  • Magma
    I:=[93645643, 12024611022569890927]; [n le 2 select I[n] else 128405450990*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 10 2020
    
  • Maple
    seq(coeff(series(93645643*x*(1-x)/(1 - 128405450990*x + x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 10 2020
  • Mathematica
    LinearRecurrence[{128405450990,-1}, {93645643, 12024611022569890927}, 20] (* G. C. Greubel, Jan 10 2020 *)
  • PARI
    Vec(93645643*x*(1-x)/(1-128405450990*x+x^2) + O(x^20)) \\ Colin Barker, Oct 21 2014
    
  • Sage
    def A147527_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 93645643*x*(1-x)/(1 - 128405450990*x + x^2) ).list()
    a=A147527_list(20); a[1:] # G. C. Greubel, Jan 10 2020
    

Formula

a(n+2) = 128405450990*a(n+1) - a(n).
G.f.: 93645643*x*(1-x)/(1 - 128405450990*x + x^2). - Colin Barker, Oct 21 2014
a(n) = sqrt((A147528(n) + 103)^3 - A147528(n)^3). - Michel Marcus, Jan 10 2020

Extensions

Editing and a(6) from Colin Barker, Oct 21 2014