cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147533 Decimal expansion of 2*gamma-1, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 5, 4, 4, 3, 1, 3, 2, 9, 8, 0, 3, 0, 6, 5, 7, 2, 1, 2, 1, 3, 0, 2, 4, 1, 8, 0, 1, 6, 4, 8, 0, 4, 8, 6, 2, 0, 8, 4, 3, 1, 8, 6, 7, 1, 8, 7, 9, 8, 4, 7, 1, 9, 7, 6, 1, 1, 5, 3, 4, 4, 6, 9, 7, 6, 9, 7, 3, 5, 4, 5, 3, 5, 5, 5, 3, 2, 9, 3, 4, 1, 8, 7, 3, 8, 9, 4, 1, 2, 6, 5, 8, 3, 4, 9, 3, 4, 9, 9, 0, 2, 9, 2, 6
Offset: 0

Views

Author

Benoit Cloitre, Nov 06 2008

Keywords

Comments

This constant arises in the dynamical system: z(n+1) = F(z(n)) where F(z) = conjugate(zeta(z))/zeta(z) and zeta is the Riemann zeta function. For instance, starting from z(0) with Re(z(0)) > 0 and Im(z(0)) > 0 we get lim_{n->oo} Im(z(2n))/Im(z(2n-1)) = 2*gamma - 1. See Finch's book p. 29 for another appearance.

Examples

			2*gamma - 1 = 0.15443132980306572121302418016480486208431867187984...
		

References

  • Steven R. Finch, "Euler-Mascheroni constant, gamma", Section 1.5 in Mathematical Constants, Cambridge University Press, 2003, pp. 28-32.
  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 2.10, pages 101 and 115-116.

Crossrefs

Programs

  • Magma
    R:= RealField(100); 2*EulerGamma(R) -1; // G. C. Greubel, Aug 31 2018
  • Maple
    evalf(2*gamma-1); # R. J. Mathar, Jan 26 2009
  • Mathematica
    RealDigits[2*EulerGamma - 1, 10, 100][[1]] (* G. C. Greubel, Aug 31 2018 *)
  • PARI
    2*Euler-1
    

Formula

Equals limit_{n->oo} ((1/n)*Sum_{k=1..n} tau(k) - log(n)), where tau(k) is the number of divisors of k. - Jean-François Alcover, Mar 28 2013, after S. R. Finch's book, p. 29.
Equals Sum_{k>=2} (k-2)*(zeta(k)-1)/k. - Amiram Eldar, Jun 26 2021
Equals Sum_{k>=2} (H(k) - gamma - Sum_{j=2..k} zeta(j)/j), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2016). - Amiram Eldar, Dec 02 2021
Equals Integral_{x=0..1} frac(1/x)*frac(1/(1-x)) dx (Furdui, 2013). - Amiram Eldar, Mar 26 2022