A147533 Decimal expansion of 2*gamma-1, where gamma is the Euler-Mascheroni constant.
1, 5, 4, 4, 3, 1, 3, 2, 9, 8, 0, 3, 0, 6, 5, 7, 2, 1, 2, 1, 3, 0, 2, 4, 1, 8, 0, 1, 6, 4, 8, 0, 4, 8, 6, 2, 0, 8, 4, 3, 1, 8, 6, 7, 1, 8, 7, 9, 8, 4, 7, 1, 9, 7, 6, 1, 1, 5, 3, 4, 4, 6, 9, 7, 6, 9, 7, 3, 5, 4, 5, 3, 5, 5, 5, 3, 2, 9, 3, 4, 1, 8, 7, 3, 8, 9, 4, 1, 2, 6, 5, 8, 3, 4, 9, 3, 4, 9, 9, 0, 2, 9, 2, 6
Offset: 0
Examples
2*gamma - 1 = 0.15443132980306572121302418016480486208431867187984...
References
- Steven R. Finch, "Euler-Mascheroni constant, gamma", Section 1.5 in Mathematical Constants, Cambridge University Press, 2003, pp. 28-32.
- Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 2.10, pages 101 and 115-116.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Ovidiu Furdui, Problem H-790, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 54, No. 2 (2016), p. 186; A series involving harmonic numbers and the zeta function at positive integers, Solution to Problem H-790 by Ramya Dutta, ibid., Vol. 56, No. 2 (2018), pp. 190-191.
Programs
-
Magma
R:= RealField(100); 2*EulerGamma(R) -1; // G. C. Greubel, Aug 31 2018
-
Maple
evalf(2*gamma-1); # R. J. Mathar, Jan 26 2009
-
Mathematica
RealDigits[2*EulerGamma - 1, 10, 100][[1]] (* G. C. Greubel, Aug 31 2018 *)
-
PARI
2*Euler-1
Formula
Equals limit_{n->oo} ((1/n)*Sum_{k=1..n} tau(k) - log(n)), where tau(k) is the number of divisors of k. - Jean-François Alcover, Mar 28 2013, after S. R. Finch's book, p. 29.
Equals Sum_{k>=2} (k-2)*(zeta(k)-1)/k. - Amiram Eldar, Jun 26 2021
Equals Sum_{k>=2} (H(k) - gamma - Sum_{j=2..k} zeta(j)/j), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Furdui, 2016). - Amiram Eldar, Dec 02 2021
Equals Integral_{x=0..1} frac(1/x)*frac(1/(1-x)) dx (Furdui, 2013). - Amiram Eldar, Mar 26 2022
Comments