cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A358040 a(n) is the number of divisors of the n-th cubefree number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 4, 2, 6, 2, 4, 4, 2, 6, 2, 6, 4, 4, 2, 3, 4, 6, 2, 8, 2, 4, 4, 4, 9, 2, 4, 4, 2, 8, 2, 6, 6, 4, 2, 3, 6, 4, 6, 2, 4, 4, 4, 2, 12, 2, 4, 6, 4, 8, 2, 6, 4, 8, 2, 2, 4, 6, 6, 4, 8, 2, 4, 2, 12, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 2, 6, 6, 9, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A072048.

Crossrefs

Cf. A000005, A001620 (gamma), A004709, A072048, A073002 (-zeta'(2)), A147533 (2*gamma-1), A358039.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[100], Max[FactorInteger[#][[;;, 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, divisor_count
    def A358040(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_count(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000005(A004709(n)).
Sum_{k=1..n} a(k) = (36*c_1/Pi^4) * n * (log(n) + (2*gamma - 1) - 24*zeta'(2)/Pi^2 - 4*c_2) + O(n^(1/2 + eps)), where c_1 = Product_{p prime} ((p^2+2*p+3)/(p+1)^2) = 1.58095136661854869148023... and c_2 = Sum_{p prime} p*log(p)/((p+1)*(p^2+2*p+3)) = 0.229224... (Weiyi, 2004).

A155739 Decimal expansion of the Euler-Mascheroni constant divided by 2.

Original entry on oeis.org

2, 8, 8, 6, 0, 7, 8, 3, 2, 4, 5, 0, 7, 6, 6, 4, 3, 0, 3, 0, 3, 2, 5, 6, 0, 4, 5, 0, 4, 1, 2, 0, 1, 2, 1, 5, 5, 2, 1, 0, 7, 9, 6, 6, 7, 9, 6, 9, 9, 6, 1, 7, 9, 9, 4, 0, 2, 8, 8, 3, 6, 1, 7, 4, 4, 2, 4, 3, 3, 8, 6, 3, 3, 8, 8, 8, 3, 2, 3, 3, 5, 4, 6, 8, 4, 7, 3, 5, 3, 1, 6, 4, 5, 8, 7, 3, 3, 7, 4, 7, 5, 7, 3, 1, 5
Offset: 0

Views

Author

R. J. Mathar, Jan 26 2009

Keywords

Examples

			0.288607832450766430303256045041201215521079667969961799402...
		

Crossrefs

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)/2; // G. C. Greubel, Aug 31 2018
  • Maple
    evalf(gamma/2) ;
  • Mathematica
    RealDigits[EulerGamma/2 , 10, 100][[1]] (* G. C. Greubel, Aug 31 2018 *)
  • PARI
    default(realprecision, 100); Euler/2 \\ G. C. Greubel, Aug 31 2018
    

Formula

Equals A001620/2 = (1 + A147533)/4.
Equals Sum_{k,m>=1} k*(zeta(k+m)-1)/(k+m)^2 (Furdui, 2011). - Amiram Eldar, Jun 09 2022

A351411 Number of divisors of n not of the form p^p, p prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 3, 4, 2, 5, 2, 4, 4, 4, 2, 6, 2, 5, 4, 4, 2, 7, 3, 4, 3, 5, 2, 8, 2, 5, 4, 4, 4, 8, 2, 4, 4, 7, 2, 8, 2, 5, 6, 4, 2, 9, 3, 6, 4, 5, 2, 7, 4, 7, 4, 4, 2, 11, 2, 4, 6, 6, 4, 8, 2, 5, 4, 8, 2, 11, 2, 4, 6, 5, 4, 8, 2, 9, 4, 4, 2, 11, 4, 4, 4, 7, 2, 12, 4, 5, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 10 2022

Keywords

Examples

			a(108) = 10; 2 of the 12 divisors of 108 are of the form p^p (p prime), namely 4 = 2^2 and 27 = 3^3; therefore a(108) = 12-2 = 10.
		

Crossrefs

Cf. A000005 (tau), A001221 (omega), A001222 (Omega), A007947 (rad).

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := If[e < p, 0, 1]; a[1] = 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Plus @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); vecprod(apply(x -> x+1, f[, 2])) - sum(i = 1, #f~, f[i, 2] >= f[i, 1]); } \\ Amiram Eldar, Oct 01 2023

Formula

a(n) = tau(n) - Sum_{d|n} [rad(d) = Omega(d)*[omega(d) = 1]], where [ ] is the Iverson bracket.
a(n) = A000005(n) - A129251(n).
Sum_{k=1..n} a(k) ~ n * (log(n) + c), where c = A147533 - A094289 = -0.1329269215... . Amiram Eldar, Oct 01 2023

A386713 Decimal expansion of Integral_{x=0..1} {1/x}^2 * {1/(1-x)}^2 dx, where {} denotes fractional part.

Original entry on oeis.org

0, 4, 2, 6, 4, 5, 6, 0, 6, 0, 3, 1, 2, 5, 0, 4, 9, 1, 8, 1, 6, 5, 8, 9, 5, 3, 0, 9, 1, 5, 3, 3, 1, 3, 9, 4, 7, 2, 2, 5, 4, 2, 4, 4, 5, 3, 4, 2, 5, 7, 2, 9, 0, 7, 3, 1, 4, 1, 4, 3, 3, 8, 4, 3, 2, 2, 6, 5, 4, 6, 6, 0, 3, 0, 7, 4, 2, 4, 4, 9, 7, 8, 1, 0, 1, 5, 8, 1, 3, 5, 9, 2, 0, 6, 4, 6, 5, 8, 2, 9, 1, 7, 5, 1, 9
Offset: 0

Views

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.04264560603125049181658953091533139472254244534257...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See section 2.11, page 101.

Crossrefs

Cf. A001620 (gamma), A061444, A345208.
Cf. A147533 (m=1), this constant (m=2), A386714 (m=3).

Programs

  • Mathematica
    RealDigits[4*Log[2*Pi] - 4*EulerGamma - 5, 10, 120, -1][[1]]
  • PARI
    4*log(2*Pi) - 4*Euler - 5

Formula

Equals 4*log(2*pi) - 4*gamma - 5.
Equals 4*A345208 - 1.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m * {1/(1-x)}^m dx = 2 * (Sum_{j=2..m-1} (-1)^(m+j-1) * (zeta(j)-1)) + (-1)^m - (2*m) * Sum_{k>=0} (zeta(2*k+m) - zeta(2*k+m+1))/(k+m) (note that the first sum vanishes when m = 2).

A386714 Decimal expansion of Integral_{x=0..1} {1/x}^3 * {1/(1-x)}^3 dx, where {} denotes fractional part.

Original entry on oeis.org

0, 1, 4, 6, 1, 1, 7, 0, 2, 6, 1, 6, 5, 3, 2, 6, 9, 5, 6, 8, 4, 2, 7, 2, 0, 3, 5, 4, 7, 3, 8, 7, 3, 5, 6, 5, 0, 7, 6, 0, 6, 8, 1, 1, 5, 0, 2, 6, 8, 3, 5, 6, 1, 6, 8, 7, 0, 7, 2, 8, 0, 1, 8, 3, 5, 6, 3, 5, 6, 5, 4, 6, 7, 9, 9, 4, 4, 6, 5, 8, 5, 9, 8, 3, 1, 9, 6, 3, 1, 7, 5, 9, 4, 3, 4, 6, 3, 7, 1, 1, 5, 7, 3, 9, 8
Offset: 0

Views

Author

Amiram Eldar, Jul 31 2025

Keywords

Examples

			0.01461170261653269568427203547387356507606811502683...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See section 2.11, page 101.

Crossrefs

Cf. A001620 (gamma), A013661, A061444, A074962 (A), A225746.
Cf. A147533 (m=1), A386713 (m=2), this constant (m=3).

Programs

  • Mathematica
    RealDigits[-Zeta[2] + 3*EulerGamma + 36*Log[Glaisher] - 6*Log[2*Pi] + 2, 10, 120, -1][[1]]
  • PARI
    -zeta(2) + 3*Euler + 36*(1/12-zeta'(-1)) - 6*log(2*Pi) + 2

Formula

Equals -zeta(2) + 3*gamma + 36*log(A) - 6*log(2*Pi) + 2, where gamma is Euler's constant and A is the Glaisher-Kinkelin constant.
In general, for m >= 2, Integral_{x=0..1} {1/x}^m * {1/(1-x)}^m dx = 2 * (Sum_{j=2..m-1} (-1)^(m+j-1) * (zeta(j)-1)) + (-1)^m - (2*m) * Sum_{k>=0} (zeta(2*k+m) - zeta(2*k+m+1))/(k+m) (note that the first sum vanishes when m = 2).

A335007 Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.

Original entry on oeis.org

1, 2, 9, 4, 3, 5, 3, 3, 1, 5, 9, 9, 2, 1, 3, 1, 3, 3, 4, 0, 1, 2, 7, 5, 2, 9, 0, 0, 2, 0, 4, 2, 6, 4, 8, 6, 6, 8, 9, 1, 2, 8, 3, 2, 3, 3, 4, 9, 3, 7, 0, 9, 1, 5, 6, 7, 2, 7, 9, 2, 9, 1, 9, 0, 6, 4, 5, 5, 7, 0, 0, 0, 8, 2, 8, 8, 8, 1, 0, 5, 5, 5, 4, 4, 9, 6, 2
Offset: 1

Views

Author

Amiram Eldar, May 19 2020

Keywords

Examples

			1.2943533159921313340127529002042648668912832334937...
		

Crossrefs

Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.

Programs

  • Mathematica
    RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]
  • PARI
    2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ Michel Marcus, May 19 2020

Formula

Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).
Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.
Showing 1-6 of 6 results.