A147572 Numbers with exactly 5 distinct prime divisors {2,3,5,7,11}.
2310, 4620, 6930, 9240, 11550, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 32340, 34650, 36960, 41580, 46200, 48510, 50820, 55440, 57750, 62370, 64680, 69300, 73920, 76230, 80850, 83160, 92400, 97020, 101640, 103950, 110880, 113190, 115500, 124740, 127050
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; Do[If[EulerPhi[x]/x == 16/77, AppendTo[a, x]], {x, 1, 100000}]; a Select[Range[130000],FactorInteger[#][[All,1]]=={2,3,5,7,11}&] (* Harvey P. Dale, Oct 04 2020 *)
-
Python
from sympy import integer_log, prevprime def A147572(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1)) def f(x): return n+x-g(x,11) return 2310*bisection(f,n,n) # Chai Wah Wu, Sep 16 2024
Formula
a(n) = 2310 * A051038(n). - Amiram Eldar, Mar 10 2020
Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Nov 12 2020
Extensions
More terms from Amiram Eldar, Mar 10 2020
Comments