cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147577 Numbers with exactly 4 distinct odd prime divisors {3,5,7,11}.

Original entry on oeis.org

1155, 3465, 5775, 8085, 10395, 12705, 17325, 24255, 28875, 31185, 38115, 40425, 51975, 56595, 63525, 72765, 86625, 88935, 93555, 114345, 121275, 139755, 144375, 155925, 169785, 190575, 202125, 218295, 259875, 266805, 280665, 282975, 317625
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Numbers k such that phi(k)/k = m
( Family of sequences for successive n odd primes )
m=2/3 numbers with exactly 1 distinct prime divisor {3} see A000244
m=8/15 numbers with exactly 2 distinct prime divisors {3,5} see A033849
m=16/35 numbers with exactly 3 distinct prime divisors {3,5,7} see A147576
m=32/77 numbers with exactly 4 distinct prime divisors {3,5,7,11} see A147577
m=384/1001 numbers with exactly 5 distinct prime divisors {3,5,7,11,13} see A147578
m=6144/17017 numbers with exactly 6 distinct prime divisors {3,5,7,11,13,17} see A147579
m=3072/323323 numbers with exactly 7 distinct prime divisors {3,5,7,11,13,17,19} see A147580
m=110592/323323 numbers with exactly 8 distinct prime divisors {3,5,7,11,13,17,19,23} see A147581

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 32/77, AppendTo[a, x]], {x, 1, 1000000}]; a
    Select[Range[350000],EulerPhi[#]/#==32/77&] (* Harvey P. Dale, Mar 25 2016 *)
  • Python
    from sympy import integer_log
    def A147577(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i11 in range(integer_log(x,11)[0]+1):
                for i7 in range(integer_log(x11:=x//11**i11,7)[0]+1):
                    for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1):
                        c -= integer_log(x7//5**i5,3)[0]+1
            return c
        return 1155*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024

Formula

Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Dec 22 2020