A147577 Numbers with exactly 4 distinct odd prime divisors {3,5,7,11}.
1155, 3465, 5775, 8085, 10395, 12705, 17325, 24255, 28875, 31185, 38115, 40425, 51975, 56595, 63525, 72765, 86625, 88935, 93555, 114345, 121275, 139755, 144375, 155925, 169785, 190575, 202125, 218295, 259875, 266805, 280665, 282975, 317625
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a = {}; Do[If[EulerPhi[x]/x == 32/77, AppendTo[a, x]], {x, 1, 1000000}]; a Select[Range[350000],EulerPhi[#]/#==32/77&] (* Harvey P. Dale, Mar 25 2016 *)
-
Python
from sympy import integer_log def A147577(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i11 in range(integer_log(x,11)[0]+1): for i7 in range(integer_log(x11:=x//11**i11,7)[0]+1): for i5 in range(integer_log(x7:=x11//7**i7,5)[0]+1): c -= integer_log(x7//5**i5,3)[0]+1 return c return 1155*bisection(f,n,n) # Chai Wah Wu, Oct 22 2024
Formula
Sum_{n>=1} 1/a(n) = 1/480. - Amiram Eldar, Dec 22 2020
Comments