cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147595 a(n) is the number whose binary representation is A138144(n).

Original entry on oeis.org

1, 3, 7, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7] cat [3*(1+2^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    LinearRecurrence[{3,-2},{1,3,7,15,27},40] (* Harvey P. Dale, Nov 30 2020 *)
  • PARI
    Vec(-x*(2*x^2-1)*(2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    [1,3,7]+[3*(1+2^(n-2)) for n in range(4,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = A060013(n+2), n > 3. - R. J. Mathar, Feb 05 2010
a(n+4) = 3*(2^(n+2) + 1), n >= 0. - Brad Clardy, Apr 03 2013
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*(4 + 2^n)/4 for n>3.
a(n) = 3*a(n-1) - 2*a(n-2).
G.f.: x*(1-2*x^2)*(1+2*x^2) / ((1-x)*(1-2*x)). (End)
E.g.f.: (3/4)*(4*exp(x) + exp(2*x)) - (15/4) - 7*x/2 - 3*x^2/2 - x^3/3. - G. C. Greubel, Oct 25 2022

Extensions

Extended by R. J. Mathar, Feb 05 2010