cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138144 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 1 and infinite 0's.

Original entry on oeis.org

1, 11, 111, 1111, 11011, 110011, 1100011, 11000011, 110000011, 1100000011, 11000000011, 110000000011, 1100000000011, 11000000000011, 110000000000011, 1100000000000011, 11000000000000011, 110000000000000011
Offset: 1

Views

Author

Omar E. Pol, Mar 29 2008

Keywords

Comments

a(n) is also A147595(n) written in base 2. [From Omar E. Pol, Nov 08 2008]

Examples

			n .... a(n)
1 .... 1
2 .... 11
3 .... 111
4 .... 1111
5 .... 11011
6 .... 110011
7 .... 1100011
8 .... 11000011
9 .... 110000011
10 ... 1100000011
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{11,-10},{1,11,111,1111,11011},20] (* Harvey P. Dale, Aug 21 2016 *)
  • PARI
    Vec(-x*(10*x^2-1)*(10*x^2+1)/((x-1)*(10*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11+11*10^(n-2) for n>3. a(n) = 11*a(n-1)-10*a(n-2). G.f.: -x*(10*x^2-1)*(10*x^2+1) / ((x-1)*(10*x-1)). - Colin Barker, Sep 15 2013

Extensions

Better definition. - Omar E. Pol, Nov 15 2008

A147596 a(n) is the number whose binary representation is A138145(n).

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    [1,3,7,15,31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    Join[{1,3,7,15,31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
  • PARI
    Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
    
  • SageMath
    def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
    [A147596(n) for n in range(1,40)] # G. C. Greubel, Oct 25 2022

Formula

a(n) = 7*(2^(n-3) + 1) if n >= 6. - Hagen von Eitzen, Jun 02 2009
From Colin Barker, Sep 15 2013: (Start)
a(n) = 3*a(n-1) - 2*a(n-2), for n >= 8.
G.f.: x*(1-2*x^2)*(1+2*x^2+4*x^4) / ((1-x)*(1-2*x)). (End)
E.g.f.: (7/8)*(8*exp(x) + exp(2*x)) - (1/8)*(63 + 62*x + 30*x^2) - 7*x^3/6 - x^4/4 - x^5/30. - G. C. Greubel, Oct 25 2022

Extensions

More terms from Hagen von Eitzen, Jun 02 2009

A147597 a(n) is the number whose binary representation is A138146(n).

Original entry on oeis.org

1, 7, 31, 119, 455, 1799, 7175, 28679, 114695, 458759, 1835015, 7340039, 29360135, 117440519, 469762055, 1879048199, 7516192775, 30064771079, 120259084295, 481036337159, 1924145348615, 7696581394439, 30786325577735, 123145302310919, 492581209243655
Offset: 1

Views

Author

Omar E. Pol, Nov 08 2008

Keywords

Comments

Bisection of A147596.

Crossrefs

Programs

  • Magma
    [1,7,31] cat [7*(1+4^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
    
  • Mathematica
    Table[FromDigits[#, 2] &@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 25}] (* or *)
    Rest@ CoefficientList[Series[x (2 x + 1) (2 x - 1) (4 x^2 + 2 x + 1)/((4 x - 1) (1 - x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 25 2016 *)
    LinearRecurrence[{5,-4},{1,7,31,119,455},30] (* Harvey P. Dale, Aug 04 2025 *)
  • PARI
    Vec(x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
    
  • SageMath
    def A147597(n): return 7*(1+4^(n-2)) -(119/16)*int(n==0) -(31/4)*int(n==1) -7*int(n==2) -4*int(n==3)
    [A147597(n) for n in range(1,41)] # G. C. Greubel, Oct 25 2022

Formula

From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 5*a(n-1) - 4*a(n-2) for n>5.
G.f.: x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)). (End)
a(n) = 7*4^(n-2) + 7 for n>3. - Colin Barker, Nov 25 2016
E.g.f.: (7/16)*(16*exp(x) + exp(4*x)) -(119/16) -31*x/4 -7*x^2/2 -2*x^3/3. - G. C. Greubel, Oct 25 2022

Extensions

More terms from R. J. Mathar, Feb 05 2010

A224380 Table read by antidiagonals of numbers of form (2^n -1)*2^(m+2) + 3 where n>=1, m>=1.

Original entry on oeis.org

11, 19, 27, 35, 51, 59, 67, 99, 115, 123, 131, 195, 227, 243, 251, 259, 387, 451, 483, 499, 507, 515, 771, 899, 963, 995, 1011, 1019, 1027, 1539, 1795, 1923, 1987, 2019, 2035, 2043, 2051, 3075, 3587, 3843, 3971, 4035, 4067, 4083, 4091, 4099, 6147, 7171, 7683, 7939, 8067, 8131, 8163, 8179
Offset: 1

Views

Author

Brad Clardy, Apr 05 2013

Keywords

Comments

The table has row labels 2^n - 1 and column labels 2^(m+2). The table entry is row*col + 3. A MAGMA program is provided that generates the numbers in a table format. The sequence is read along the antidiagonals starting from the top left corner. Using the lexicographic ordering of A057555 the sequence is:
A(n) = Table(i,j) with (i,j)=(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)...
+3 | 8 16 32 64 128 256 512 ...
----|-------------------------------------------
1 | 11 19 35 67 131 259 515
3 | 27 51 99 195 387 771 1539
7 | 59 115 227 451 899 1795 3587
15 | 123 243 483 963 1923 3843 7683
31 | 251 499 995 1987 3971 7939 15875
63 | 507 1011 2019 4035 8067 16131 32259
127 | 1019 2035 4067 8131 16259 32515 65027
...
All of these numbers have the following property: let m be a member of A(n); if a sequence B(n) = all i such that i XOR (m - 1) = i - (m - 1), then the differences between successive members of B(n) is an alternating series of 1's and 3's with the last difference in the pattern m. The number of alternating 1's and 3's in the pattern is 2^(j+1) - 1, where j is the column index.
As an example consider A(1) which is 11, the sequence B(n) where i XOR 10 = i - 10 starts as 10, 11, 14, 15, 26, 27, 30, 31, 42, ... (A214864) with successive differences of 1, 3, 1, 11.
Main diagonal is A191341, the largest k such that k-1 and k+1 in binary representation have the same number of 1's and 0's

Crossrefs

Cf. A057555(lexicographic ordering), A214864(example), A224195.
Rows: A062729(i=1), A147595(2 n>=5), A164285(3 n>=3).
Cols: A168616(j=1 n>=4).
Diagonal: A191341.

Programs

  • Magma
    //program generates values in a table form,row labels of 2^i -1
    for i:=1 to 10 do
        m:=2^i - 1;
        m, [ m*2^n +1 : n in [1..10]];
    end for;
    //program generates sequence in lexicographic ordering of A057555, read
    //along antidiagonals from top. Primes in the sequence are marked with *.
    for i:=2 to 18 do
        for j:=1 to i-1 do
           m:=2^j -1;
           k:=m*2^(2+i-j) + 3;
           if IsPrime(k) then k, "*";
              else k;
           end if;;
        end for;
    end for;

Formula

a(n) = 2^(A057555(2*n - 1))*2^(A057555(2*n) + 2) + 3 for n>=1.
Showing 1-4 of 4 results.