cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147607 Expansion of g.f.: 1/((1 - 2*x^2 + x^4 + 2*x^6 - x^8)*(1 - 2*x^2 - x^4 + 2*x^6 - x^8)).

Original entry on oeis.org

1, 0, 4, 0, 12, 0, 28, 0, 59, 0, 116, 0, 228, 0, 460, 0, 968, 0, 2092, 0, 4564, 0, 9908, 0, 21309, 0, 45444, 0, 96484, 0, 204700, 0, 434999, 0, 926440, 0, 1976344, 0, 4218936, 0, 9005328, 0, 19212728, 0, 40970200, 0, 87341032, 0, 186180665, 0, 396899620
Offset: 0

Views

Author

Roger L. Bagula, Nov 08 2008

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( 1/((1-2*x^2+x^4 +2*x^6-x^8)*(1-2*x^2-x^4+2*x^6-x^8)) )); // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-4 x^2+4 x^4+4 x^6-11 x^8+4 x^10+4 x^12-4 x^14+x^16),{x,0,60}],x] (* or *) LinearRecurrence[ {0,4,0,-4,0,-4,0,11,0,-4,0,-4,0,4,0,-1},{1,0,4,0,12,0,28,0,59,0,116,0,228,0,460,0},60] (* Harvey P. Dale, Apr 03 2013 *)
  • SageMath
    def A147607_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-2*x^2+x^4+2*x^6-x^8)*(1-2*x^2-x^4+2*x^6-x^8)) ).list()
    A147607_list(60) # G. C. Greubel, Oct 24 2022

Formula

G.f.: 1/(1 - 4*x^2 + 4*x^4 + 4*x^6 - 11*x^8 + 4*x^10 + 4*x^12 - 4*x^14 + x^16).
a(n) = 4*a(n-2) - 4*a(n-4) - 4*a(n-6) + 11*a(n-8) - 4*a(n-10) - 4*a(n-12) + 4*a(n-14) - a(n-16) with a(0)=1, a(1)=0, a(2)=4, a(3)=0, a(4)=12, a(5)=0, a(6)=28, a(7)=0, a(8)=59, a(9)=0, a(10)=116, a(11)=0, a(12)=228, a(13)=0, a(14)=460, a(15)=0. - Harvey P. Dale, Apr 03 2013
G.f.: -1/(x^8*f(x)*f(1/x)), where f(x) = -1 + 2*x^2 - x^4 - 2*x^6 + x^8. - G. C. Greubel, Oct 24 2022

Extensions

Definition corrected by N. J. A. Sloane, Nov 09 2008