A147623 The 3rd Witt transform of A040000.
0, 2, 6, 12, 22, 34, 48, 66, 86, 108, 134, 162, 192, 226, 262, 300, 342, 386, 432, 482, 534, 588, 646, 706, 768, 834, 902, 972, 1046, 1122, 1200, 1282, 1366, 1452, 1542, 1634, 1728, 1826, 1926, 2028, 2134, 2242, 2352, 2466, 2582, 2700, 2822, 2946, 3072
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Magma
[n le 2 select 1+(-1)^n else 4*(1+(n-2)^2) - Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 24 2022
-
Mathematica
CoefficientList[Series[2x(1+x)(1 +x^2)/((1-x)^3 (1+x+x^2)), {x,0,40}], x] (* Vincenzo Librandi, Dec 14 2012 *) LinearRecurrence[{2,-1,1,-2,1},{0,2,6,12,22},50] (* Harvey P. Dale, Jul 04 2021 *)
-
SageMath
[2*(2*(1+3*n^2) -(2*chebyshev_U(n, -1/2) +chebyshev_U(n-1, -1/2)))/9 for n in range(41)] # G. C. Greubel, Oct 24 2022
Formula
G.f.: 2*x*(1+x)*(1+x^2)/((1-x)^3*(1+x+x^2)).
a(n) = 2*A071619(n).
From G. C. Greubel, Oct 24 2022: (Start)
a(n) = 4*(2 - 2*n + n^2) - a(n-1) - a(n-2).
Comments