cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147623 The 3rd Witt transform of A040000.

Original entry on oeis.org

0, 2, 6, 12, 22, 34, 48, 66, 86, 108, 134, 162, 192, 226, 262, 300, 342, 386, 432, 482, 534, 588, 646, 706, 768, 834, 902, 972, 1046, 1122, 1200, 1282, 1366, 1452, 1542, 1634, 1728, 1826, 1926, 2028, 2134, 2242, 2352, 2466, 2582, 2700, 2822, 2946, 3072
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2008

Keywords

Comments

The 2nd Witt transform of A040000 is represented by A042964.

Crossrefs

Programs

  • Magma
    [n le 2 select 1+(-1)^n else 4*(1+(n-2)^2) - Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 24 2022
    
  • Mathematica
    CoefficientList[Series[2x(1+x)(1 +x^2)/((1-x)^3 (1+x+x^2)), {x,0,40}], x] (* Vincenzo Librandi, Dec 14 2012 *)
    LinearRecurrence[{2,-1,1,-2,1},{0,2,6,12,22},50] (* Harvey P. Dale, Jul 04 2021 *)
  • SageMath
    [2*(2*(1+3*n^2) -(2*chebyshev_U(n, -1/2) +chebyshev_U(n-1, -1/2)))/9 for n in range(41)] # G. C. Greubel, Oct 24 2022

Formula

G.f.: 2*x*(1+x)*(1+x^2)/((1-x)^3*(1+x+x^2)).
a(n) = 2*A071619(n).
From G. C. Greubel, Oct 24 2022: (Start)
a(n) = 4*(2 - 2*n + n^2) - a(n-1) - a(n-2).
a(n) = 2*(2*(1 + 3*n^2) - (2*A049347(n) + A049347(n-1)))/9. (End)