A147693 Irregular triangle read by rows: T(n, k) = n mod prime(k), n >= 2, 1 <= k <= PrimePi(n), where PrimePi(n) = A000720(n).
0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 2, 3, 1, 1, 0, 4, 2, 0, 1, 0, 3, 1, 2, 1, 4, 0, 0, 0, 2, 5, 1, 1, 1, 3, 6, 2, 0, 0, 2, 4, 0, 3, 1, 1, 0, 0, 1, 4, 2, 0, 1, 1, 2, 5, 3, 1, 2, 2, 3, 6, 4, 0, 0, 0, 3, 4, 7, 5, 1, 1, 1, 4, 5, 8, 6, 2, 0, 0, 2, 0, 6, 9, 7, 3, 1, 1, 0, 1, 0, 10, 8, 4, 2
Offset: 2
Examples
Triangle P begins: 2 3 5 7 +--------- 2 | 0 3 | 1 0 4 | 0 1 5 | 1 2 0 6 | 0 0 1 7 | 1 1 2 0 8 | 0 2 3 1 9 | 1 0 4 2 10 | 0 1 0 3 ... Each row can be produced from the previous row by adding one to each number and resetting to zero any which would equal their column number. A row number n is prime, initiating a new column numbered n, iff P(n, p) is nonzero for all prime p < n; P(n, n) is then 0.
References
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.7.22 on page 125.
Links
- Jason Kimberley, Rows n = 2..294 of irregular triangle, flattened
- Eric Weisstein's World of Mathematics, Redheffer Matrix
Programs
-
Magma
A147693 := func< n | [n mod p:p in PrimesUpTo(n)] >; [A147693(n):n in[2..19]]; // Jason Kimberley, Nov 28 2012
-
Mathematica
row[n_]:=Table[Mod[n,Prime[i]], {i, PrimePi[n]}]; Array[row, 20, 2]//Flatten (* Stefano Spezia, Jul 17 2025 *)
Formula
a(A046992(n-1)+i) = T(n,i) = n mod A000040(i), where 1 <= i <= A000720(n). - Jason Kimberley, Nov 21 2012
Extensions
Edited by Peter Munn, May 25 2025
Comments