cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147704 Diagonal sums of Riordan array ((1-2x)/(1 - 3x + x^2),x(1-x)/(1 - 3x + x^2)).

Original entry on oeis.org

1, 1, 3, 8, 23, 66, 190, 547, 1575, 4535, 13058, 37599, 108262, 311728, 897585, 2584493, 7441751, 21427668, 61698511, 177653782, 511533678, 1472902523, 4241053787, 12211627683, 35161980526, 101244887791, 291523035690, 839407126544, 2416976491841, 6959406439833
Offset: 0

Views

Author

Paul Barry, Nov 10 2008

Keywords

Comments

Diagonal sums of A147703.
Hankel transform is := 1,2,3,0,0,0,0,0,0,0,... - Philippe Deléham, Dec 15 2008
For n -> infinity, a(n+1)/a(n) -> 2.87938... = 1/A130880 = the largest diagonal of a nonagon (9-gon) with side 1 (see Redondo & Huylebrouck); compare to the F(n+1)/F(n) -> 1.618... = A001622 = the golden section or diagonal of a pentagon with side 1, where F is the Fibonacci sequence A000045. - Dirk Huylebrouck, Feb 15 2015

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,0,-1},{1,1,3},30] (* Harvey P. Dale, May 24 2016 *)
  • PARI
    Vec((1-x^2)/(1-3*x+x^3) + O(x^20)) \\ Michel Marcus, Feb 16 2015

Formula

G.f.: (1-x^2)/(1 - 3x + x^3).
a(n) = 3*a(n-1) - a(n-3), n>2 ; a(0)=1, a(1)=1, a(2)=3. - Philippe Deléham, Dec 15 2008
a(n) = (floor(A^n)+1)/3 for n>=1 where A = 2.8793... is the largest root of x^3-3x^2+1. - Stephen Bartell, Aug 15 2024