A147843 a(n) = -n*A010815(n).
0, 1, 2, 0, 0, -5, 0, -7, 0, 0, 0, 0, 12, 0, 0, 15, 0, 0, 0, 0, 0, 0, -22, 0, 0, 0, -26, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -51, 0, 0, 0, 0, 0, -57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 70, 0, 0, 0, 0, 0, 0, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -92, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0, 0
Offset: 0
Examples
a(5) = -5 = (-5) * A010815(5) = (-5) * 1.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
Programs
-
Mathematica
A010815[n_] := SeriesCoefficient[Product[1 - x^k, {k, n}], {x, 0, n}]; Table[-n*A010815[n], {n, 0, 50}] (* G. C. Greubel, Jun 13 2017 *)
-
PARI
a(n) = -n * if(issquare(24*n + 1, &n), kronecker(12, n)); \\ Amiram Eldar, Jan 19 2024 after Michael Somos at A010815
Formula
G.f.: -x * d eta(x)/dx (derivative) where eta(x) = prod(n>=1, 1-x^n). - Joerg Arndt, Mar 14 2010
a(n) = Sum_{k=0..n-1} A010815(k)*sigma(n-k), where sigma(n) = A000203(n) is the sum of divisors of n. - Paul D. Hanna, Jul 02 2011
Comments