cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147869 Expansion of Product_{k>0} (1 + A004001(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 11, 17, 25, 41, 59, 86, 125, 180, 263, 382, 536, 738, 1073, 1466, 2028, 2841, 3889, 5275, 7211, 9800, 13249, 17860, 23948, 31921, 42864, 56802, 75115, 99788, 131239, 172870, 226789, 296404, 386745, 504939, 655227, 849628, 1101270
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 11 2020: (Start)
Let f(m) = A004001(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*2 + 1*1*2 = 11,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 4 + 1*4 + 1*3 + 2*2 + 1*1*2 = 17. (End)
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + f[n - f[n - 1]];
    P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45]

Formula

a(n) = [x^n] Product_{k > 0} (1 + A004001(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A004001(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 11 2020

Extensions

Various sections edited by Petros Hadjicostas, Apr 11 2020