A147869 Expansion of Product_{k>0} (1 + A004001(k)*x^k).
1, 1, 1, 3, 4, 7, 11, 17, 25, 41, 59, 86, 125, 180, 263, 382, 536, 738, 1073, 1466, 2028, 2841, 3889, 5275, 7211, 9800, 13249, 17860, 23948, 31921, 42864, 56802, 75115, 99788, 131239, 172870, 226789, 296404, 386745, 504939, 655227, 849628, 1101270
Offset: 0
Keywords
Examples
From _Petros Hadjicostas_, Apr 11 2020: (Start) Let f(m) = A004001(m). Using the strict partitions of each n (see A000009), we get a(1) = f(1) = 1, a(2) = f(2) = 1, a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3, a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4, a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7, a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*2 + 1*1*2 = 11, a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 4 + 1*4 + 1*3 + 2*2 + 1*1*2 = 17. (End)
Programs
-
Mathematica
f[0] = 0; f[1] = 1; f[2] = 1; f[n_] := f[n] = f[f[n - 1]] + f[n - f[n - 1]]; P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}]; Take[CoefficientList[P[x, 45], x], 45]
Formula
a(n) = [x^n] Product_{k > 0} (1 + A004001(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A004001(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 11 2020
Extensions
Various sections edited by Petros Hadjicostas, Apr 11 2020