A147877 The number of degree sequences with degree sum 2n representable by a non-separable graph (with multiple edges allowed).
1, 1, 2, 3, 5, 9, 15, 25, 43, 70, 113, 181, 283, 436, 666, 999, 1483, 2179, 3166, 4556, 6504, 9200, 12918, 18011, 24938, 34308, 46928, 63815, 86324, 116187, 155626, 207502, 275491, 364226, 479660, 629305, 822655, 1071694, 1391531, 1801041, 2323958, 2989883
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
- O. J. Rodseth, J. A. Sellers and H. Tverberg, Enumeration of the Degree Sequences of Non-Separable Graphs and Connected Graphs, European Journal of Combinatorics 30 (2009), 1301-1317.
Crossrefs
Cf. A147878.
Programs
-
Maple
with(combinat): seq(numbpart(2*m) - numbpart(2*m - 1) - add(numbpart(j), j = 0 .. m-2), m=1..60);
-
PARI
a(n) = numbpart(2*n) - numbpart(2*n-1) - sum(j=0, n-2, numbpart(j)); \\ Michel Marcus, Nov 04 2016
Formula
a(n) = p(2n) - p(2n-1) - Sum_{j=0..n-2} p(j).
a(n) = A000041(2*n) - A000041(2*n-1) - A000070(n) + A000041(n) + A000041(n-1). - Vaclav Kotesovec, Nov 05 2016
a(n) ~ exp(2*Pi*sqrt(n/3))*Pi/(48*n^(3/2)) * (1 - (3*sqrt(3)/(2*Pi) + 13*Pi/(48*sqrt(3)))/sqrt(n)). - Vaclav Kotesovec, Nov 05 2016
Extensions
Offset corrected by Michel Marcus, Nov 04 2016