cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147880 Expansion of Product_{k > 0} (1 + A005229(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 21, 30, 50, 75, 110, 169, 249, 361, 539, 757, 1076, 1583, 2207, 3121, 4415, 6184, 8468, 11775, 16274, 22314, 30601, 41745, 56412, 77008, 103507, 138383, 186928, 249855, 333375, 443898, 588402, 778276, 1031126, 1356945, 1780645
Offset: 0

Views

Author

Roger L. Bagula, Nov 16 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 10 2020: (Start)
Let f(m) = A005229(m). Using the strict partitions of each n (see A000009), we get
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 3 + 1*2 = 5,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*3 + 1*2 = 8,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 4 + 1*3 + 1*3 + 1*1*2 = 12,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 5 + 1*4 + 1*3 + 2*3 + 1*1*3 = 21. (End)
		

Crossrefs

Programs

  • Mathematica
    (*A005229*) f[n_Integer?Positive] := f[n] = f[ f[n - 2]] + f[n - f[n - 2]]; f[0] = 0; f[1] = f[2] = 1;
    P[x_, n_] := P[x, n] = Product[1 + f[m] *x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45] (* Program simplified by Petros Hadjicostas, Apr 13 2020 *)
  • PARI
    \\ here B(n) is A005229 as vector.
    B(n)={my(a=vector(n, i, 1)); for(n=3, n, a[n] = a[a[n-2]] + a[n-a[n-2]]); a}
    seq(n)={my(v=B(n)); Vec(prod(k=1, n, 1 + v[k]*x^k + O(x*x^n)))} \\ Andrew Howroyd, Apr 10 2020

Formula

G.f.: Product_{k > 0} (1 + A005229(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A005229(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n.

Extensions

Various sections edited by Joerg Arndt and Petros Hadjicostas, Apr 10 2020