cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A147955 Expansion of Product_{k >= 0} (1 + A147954(k)*x^k).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 10, 15, 22, 34, 46, 65, 93, 123, 175, 245, 324, 425, 592, 764, 1015, 1352, 1750, 2266, 2931, 3793, 4897, 6259, 7930, 10080, 12788, 16047, 20176, 25482, 31641, 39630, 49306, 60932, 75552, 93432, 114597, 141013, 173259, 211595, 258933, 316375, 384359, 466927, 566443
Offset: 0

Views

Author

Roger L. Bagula, Nov 17 2008

Keywords

Examples

			From _Petros Hadjicostas_, Apr 21 2020: (Start)
Let f(m) = A147954(m). Using the strict partitions of n (see A000009), we get:
a(1) = f(1) = 1,
a(2) = f(2) = 1,
a(3) = f(3) + f(1)*f(2) = 2 + 1*1 = 3,
a(4) = f(4) + f(1)*f(3) = 2 + 1*2 = 4,
a(5) = f(5) + f(1)*f(4) + f(2)*f(3) = 3 + 1*2 + 1*2 = 7,
a(6) = f(6) + f(1)*f(5) + f(2)*f(4) + f(1)*f(2)*f(3) = 3 + 1*3 + 1*2 + 1*1*2 = 10,
a(7) = f(7) + f(1)*f(6) + f(2)*f(5) + f(3)*f(4) + f(1)*f(2)*f(4) = 3 + 1*3 + 1*3 + 2*2 + 1*1*2 = 15. (End)
		

Crossrefs

Programs

  • Maple
    f := proc(n) local v; option remember;
    if n = 0 then v := 0; end if;
    if n = 1 or n = 2 then v := 1; end if;
    if 3 <= n and n <= 5 then v := f(f(n - 1)) + f(n - f(n - 1)); end if;
    if 6 <= n and 5 <> n mod 6 then v := f(f(n - 1)) + f(f(floor(n/6))); end if;
    if 6 <= n and 5 = n mod 6 then v := f(f(n - 1)) + f(n - f(floor(n/6))); end if; v; end proc; # this gives sequence A147954
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*f(i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50); # Petros Hadjicostas, Apr 21 2020 (using Alois P. Heinz's program from A147655)
  • Mathematica
    f[0] = 0; f[1] = 1; f[2] = 1;
    f[n_] := f[n] =
       f[f[n - 1]] +
        If[n < 6, f[n - f[n - 1]],
         If[Mod[n, 6] == 0, f[f[n/6]],
          If[Mod[n, 6] == 1, f[f[(n - 1)/6]],
           If[Mod[n, 6] == 2, f[f[(n - 2)/6]],
            If[Mod[n, 6] == 3, f[f[(n - 3)/6]],
             If[Mod[n, 6] == 4, f[f[(n - 4)/6]], f[n - f[(n - 5)/6]]]]]]]];
    P[x_, n_] := P[x, n] = Product[1 + f[m]*x^m, {m, 0, n}];
    Take[CoefficientList[P[x, 45], x], 45]

Formula

a(n) = [x^n] Product_{k >= 0} (1 + A147954(k)*x^k).
a(n) = Sum_{(b_1,...,b_n)} f(1)^b_1 * f(2)^b_2 * ... * f(n)^b_n, where f(m) = A147954(m), and the sum is taken over all lists (b_1,...,b_n) with b_j in {0,1} and Sum_{j=1..n} j*b_j = n. - Petros Hadjicostas, Apr 21 2020

Extensions

Name, data, and Mathematica program edited and corrected by Petros Hadjicostas, Apr 21 2020