cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A164599 a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.

Original entry on oeis.org

1, 15, 163, 1577, 14417, 127719, 1110467, 9543745, 81420481, 691330719, 5851867459, 49433600633, 417032638289, 3515077706295, 29610553888547, 249339102243793, 2099051398651393, 17667781775661231, 148693529122641763
Offset: 0

Views

Author

Klaus Brockhaus, Aug 17 2009

Keywords

Comments

Binomial transform of A164598. Seventh binomial transform of A164587. Inverse binomial transform of A081185 without initial term 0.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 11 2021

Crossrefs

Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), this sequence (m=6), A081185 (m=7), A164600 (m=8).

Programs

  • Magma
    [ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];
    
  • Maple
    m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Mar 11 2021
  • Mathematica
    LinearRecurrence[{14,-47}, {1,15}, 30] (* G. C. Greubel, Aug 11 2017 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164599_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)/(1-14*x+47*x^2) ).list()
    A164599_list(30) # G. C. Greubel, Mar 11 2021

Formula

a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.
G.f.: (1+x)/(1-14*x+47*x^2).
E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - G. C. Greubel, Aug 11 2017
From G. C. Greubel, Mar 11 2021: (Start)
a(n) = A147958(n) + 8*A081184(n).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

A147957 a(n) = ((6 + sqrt(2))^n + (6 - sqrt(2))^n)/2.

Original entry on oeis.org

1, 6, 38, 252, 1732, 12216, 87704, 637104, 4663312, 34298208, 253025888, 1870171584, 13839178816, 102484311936, 759279663488, 5626889356032, 41707163713792, 309171726460416, 2292017151256064, 16992367115418624, 125979822242317312, 934017384983574528, 6924894663564105728
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)blogspot.com), Nov 17 2008

Keywords

Comments

6th binomial transform of A077957. Binomial transform of A083880. Inverse binomial transform of A147958. - Philippe Deléham, Nov 30 2008

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+r2)^n+(6-r2)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
    
  • Mathematica
    LinearRecurrence[{12, -34}, {1, 6}, 50] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-6*x)/(1-12*x+34*x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 12*a(n-1) - 34*a(n-2), n > 1; a(0)=1, a(1)=6.
G.f.: (1 - 6*x)/(1 - 12*x + 34*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*6^(2k)*2^(n-k))/6^n. (End)
E.g.f.: exp(6*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017

Extensions

Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008

A147959 a(n) = ((8 + sqrt(2))^n + (8 - sqrt(2))^n)/2.

Original entry on oeis.org

1, 8, 66, 560, 4868, 43168, 388872, 3545536, 32618512, 302072960, 2810819616, 26244590336, 245642629184, 2303117466112, 21620036448384, 203127300275200, 1909594544603392, 17959620096591872, 168959059780059648
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Nov 17 2008

Keywords

Comments

Binomial transform of A147958. Inverse binomial transform of A147960. 8th binomial transform of A077957. - Philippe Deléham, Nov 30 2008

Examples

			a(3) = ((8 + sqrt(2))^3 + (8 - sqrt(2))^3)/2
     = (8^3 + 3*8^2*sqrt(2) + 3*8*2 + 2*sqrt(2)
      + 8^3 - 3*8^2*sqrt(2) + 3*8*2 - 2*sqrt(2))/2
     =  8^3                 + 3*8*2
     =  560.
		

Crossrefs

Programs

  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+r2)^n+(8-r2)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008
    
  • Mathematica
    LinearRecurrence[{16, -62}, {1, 8}, 50] (* G. C. Greubel, Aug 17 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-8*x)/(1-16*x+62*x^2)) \\ G. C. Greubel, Aug 17 2018

Formula

From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 16*a(n-1) - 62*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1 - 8*x)/(1 - 16*x + 62*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*8^(2k)*2^(n-k))/8^n. (End)
E.g.f.: exp(8*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017

Extensions

Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008
Showing 1-3 of 3 results.