A147959 a(n) = ((8 + sqrt(2))^n + (8 - sqrt(2))^n)/2.
1, 8, 66, 560, 4868, 43168, 388872, 3545536, 32618512, 302072960, 2810819616, 26244590336, 245642629184, 2303117466112, 21620036448384, 203127300275200, 1909594544603392, 17959620096591872, 168959059780059648
Offset: 0
Examples
a(3) = ((8 + sqrt(2))^3 + (8 - sqrt(2))^3)/2 = (8^3 + 3*8^2*sqrt(2) + 3*8*2 + 2*sqrt(2) + 8^3 - 3*8^2*sqrt(2) + 3*8*2 - 2*sqrt(2))/2 = 8^3 + 3*8*2 = 560.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-62).
Programs
-
Magma
Z
:= PolynomialRing(Integers()); N :=NumberField(x^2-2); S:=[ ((8+r2)^n+(8-r2)^n)/2: n in [0..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008 -
Mathematica
LinearRecurrence[{16, -62}, {1, 8}, 50] (* G. C. Greubel, Aug 17 2018 *)
-
PARI
x='x+O('x^30); Vec((1-8*x)/(1-16*x+62*x^2)) \\ G. C. Greubel, Aug 17 2018
Formula
From Philippe Deléham, Nov 19 2008: (Start)
a(n) = 16*a(n-1) - 62*a(n-2), n > 1; a(0)=1, a(1)=8.
G.f.: (1 - 8*x)/(1 - 16*x + 62*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*8^(2k)*2^(n-k))/8^n. (End)
E.g.f.: exp(8*x)*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Aug 11 2017
Extensions
Extended beyond a(6) by Klaus Brockhaus, Nov 19 2008
Comments