A147962 a(n) = ((7+sqrt(3))^n + (7-sqrt(3))^n) / 2.
1, 7, 52, 406, 3292, 27412, 232336, 1991752, 17197072, 149138416, 1296872512, 11295848032, 98485736896, 859191307072, 7498334401792, 65453881499776, 571430958514432, 4989154870212352, 43562344091309056, 380371693248558592, 3321335877279603712
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14, -46).
Programs
-
Magma
Z
:= PolynomialRing(Integers()); N :=NumberField(x^2-3); S:=[ ((7+r3)^n+(7-r3)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 19 2008 -
Mathematica
LinearRecurrence[{14,-46},{1,7},30] (* Harvey P. Dale, Aug 18 2012 *)
-
PARI
Vec((1-7*x) / (1-14*x+46*x^2) + O(x^30)) \\ Colin Barker, Sep 24 2017
Formula
From Zak Seidov, Nov 19 2008: (Start)
a(0) = 1; a(1) = 7; a(n) = 14 * a(n - 1) - 46 * a(n - 2);
a(n) = ((7+sqrt(3))^n + (7-sqrt(3))^n)/2. (End)
From Philippe Deléham, Nov 19 2008: (Start)
G.f.: (1-7*x)/(1-14*x+46*x^2).
a(n) = (Sum_{k=0..n} A098158(n,k)*7^(2*k)*3^(n-k))/7^n. (End)
Extensions
Extended beyond a(6) by Klaus Brockhaus and Zak Seidov, Nov 19 2008