A147991 Sequence S such that 1 is in S and if x is in S, then 3x-1 and 3x+1 are in S.
1, 2, 4, 5, 7, 11, 13, 14, 16, 20, 22, 32, 34, 38, 40, 41, 43, 47, 49, 59, 61, 65, 67, 95, 97, 101, 103, 113, 115, 119, 121, 122, 124, 128, 130, 140, 142, 146, 148, 176, 178, 182, 184, 194, 196, 200, 202, 284, 286, 290, 292, 302, 304, 308, 310, 338, 340, 344, 346
Offset: 1
Keywords
Examples
0th generation: 1; 1st generation: 2 4; 2nd generation: 5 7 11 13.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Gevorg Hmayakyan, Trig identity for a(n)
- J. H. Loxton and A. J. van der Poorten, An Awful Problem About Integers in Base Four, Acta Arithmetica, volume 49, 1987, pages 193-203. In section 7, John Selfridge and Carole Lacampagne ask whether every k != 0 (mod 3) is the quotient of two terms of this sequence (cf. A351243 and A006288).
- Eric Weisstein's World of Mathematics, Cantor Set
- Eric Weisstein's World of Mathematics, Closure
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, insert, deleteFindMin) a147991 n = a147991_list !! (n-1) a147991_list = f $ singleton 1 where f s = m : (f $ insert (3*m - 1) $ insert (3*m + 1) s') where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Feb 21 2012, Jan 23 2011
-
Maple
A147991:= proc(n) option remember; if n::even then 3*procname(n/2)-1 else 3*procname((n-1)/2)+1 fi end proc: A147991(1):= 1: [seq](A147991(i),i=1..1000); # Robert Israel, May 05 2014
-
Mathematica
nn=346; s={1}; While[s1=Select[Union[s, 3*s-1, 3*s+1], # <= nn &]; s != s1, s=s1]; s a[ n_] := If[ n < -1 || n > 0, 3 a[Quotient[n, 2]] - (-1)^Mod[n, 2], 0]; (* Michael Somos, Dec 22 2018 *)
-
PARI
{a(n) = if( n<-1 || n>0, 3*a(n\2) - (-1)^(n%2), 0)}; /* Michael Somos, Dec 22 2018 */
-
PARI
a(n) = fromdigits(apply(b->if(b,1,-1),binary(n)), 3); \\ Kevin Ryde, Feb 06 2022
Formula
a(n) = 3*a(n/2) - 1 if n>=2 is even, 3*a((n-1)/2) + 1 if n is odd, a(0)=0. - Robert Israel, May 05 2014
G.f. g(x) satisfies g(x) = 3*(x+1)*g(x^2) + x/(1+x). - Robert Israel, May 05 2014
Product_{j=0..n-1} cos(3^j) = 2^(-n+1)*Sum_{i=2^(n-1)..2^n-1} cos(a(i)). - Gevorg Hmayakyan, Jan 15 2017
Sum_{i=2^(n-1)..2^n-1} cos(a(i)/3^(n-1)*Pi/2) = 0. - Gevorg Hmayakyan, Jan 15 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Dec 22 2018
a(n) mod 2 = A030300(n). - Alois P. Heinz, Jan 29 2023
Comments