A151610
Number of permutations of 7 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 252, 4935, 56560, 572215, 5503260, 51377823, 469758912, 4227854463, 37580958940, 330712475863, 2886218015856, 25013889523623, 215504279034492, 1847179534652655, 15762598695784192, 133982088914258095, 1134907106097349116, 9583660007044397799, 80704505322479268720
Offset: 1
-
a(n) = if(n <= 1, 0, n*(7*8^n/2 - 49*n)) \\ Andrew Howroyd, May 04 2020
-
concat(0, Vec(7*x^2*(36 + 21*x - 1175*x^2 + 624*x^3 - 192*x^4) / ((1 - x)^3*(1 - 8*x)^2) + O(x^20))) \\ Colin Barker, Jul 16 2020
A151590
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 12, 207, 1392, 7455, 36540, 171591, 785856, 3538215, 15727740, 69204927, 301988592, 1308621327, 5637142812, 24159189015, 103079212800, 438086661591, 1855425868956, 7834020344655, 32985348829680, 138538465095807, 580542139461372, 2427721674124647
Offset: 1
-
a(n) = if(n <= 1, 0, n*(3*4^n/2 - 9*n)) \\ Andrew Howroyd, May 04 2020
-
concat(0, Vec(3*x^2*(4 + 25*x - 123*x^2 + 56*x^3 - 16*x^4) / ((1 - x)^3*(1 - 4*x)^2) + O(x^40))) \\ Colin Barker, Jul 16 2020
A151597
Number of permutations of 4 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 36, 606, 4744, 30850, 186924, 1092966, 6248976, 35154954, 195310900, 1074216814, 5859372696, 31738278546, 170898434364, 915527340150, 4882812495904, 25939941401626, 137329101557316, 724792480462974, 3814697265618600, 20027160644524194, 104904174804679756
Offset: 1
-
[0] cat [ n*(2*5^n - 16*n) : n in [2..30]]; // Wesley Ivan Hurt, Jul 16 2020
-
a(n) = if(n <= 1, 0, n*(2*5^n - 16*n)) \\ Andrew Howroyd, May 04 2020
-
concat(0, Vec(2*x^2*(18 + 69*x - 523*x^2 + 255*x^3 - 75*x^4) / ((1 - x)^3*(1 - 5*x)^2) + O(x^40))) \\ Colin Barker, Jul 16 2020
A151603
Number of permutations of 5 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 80, 1395, 12560, 96575, 698940, 4897655, 33590720, 226746135, 1511651900, 9976916015, 65303466480, 424472551295, 2742745738460, 17631936915975, 112844396291840, 719383026394055, 4570198050070620, 28944587650489535, 182807922003138800, 1151689908619826415
Offset: 1
-
[0] cat [n*((5/2)*6^n - 25*n) : n in [2..30]]; // Wesley Ivan Hurt, Jul 17 2020
-
a(n) = if(n <= 1, 0, n*(5*6^n/2 - 25*n)) \\ Andrew Howroyd, May 04 2020
-
Vec(5*x^2*(16 + 39*x - 473*x^2 + 240*x^3 - 72*x^4) / ((1 - x)^3*(1 - 6*x)^2) + O(x^21)) \\ Colin Barker, Jul 17 2020
A151607
Number of permutations of 6 indistinguishable copies of 1..n arranged in a circle with exactly 2 adjacent element pairs in decreasing order.
Original entry on oeis.org
0, 150, 2763, 28236, 251205, 2116386, 17292639, 138352920, 1089544473, 8474253870, 65251778163, 498286334052, 3778671399789, 28485369052602, 213640267939335, 1595180667331632, 11864156213337153, 87934334287152582, 649737025566256155, 4787535977856705660
Offset: 1
-
a(n) = if(n <= 1, 0, n*(3*7^n - 36*n)) \\ Andrew Howroyd, May 04 2020
-
concat(0, Vec(3*x^2*(50 + 71*x - 1545*x^2 + 805*x^3 - 245*x^4) / ((1 - x)^3*(1 - 7*x)^2) + O(x^40))) \\ Colin Barker, Jul 17 2020
Showing 1-5 of 5 results.