cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A151625 Number of permutations of 2 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 20, 1168, 27664, 450048, 6030140, 72338144, 811888600, 8742609264, 91700484132, 945739871600, 9647920866016, 97729381122976, 985430937715404, 9906926101717184, 99407643757824680, 996242539625306512, 9976235831375328564, 99850100363120616144
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=3 of A154283.

Programs

  • Magma
    A151625:= func< n | (&+[(-1)^j*Binomial(2*n+1,4-j)*Binomial(j+1,2)^n: j in [1..4]]) >;
    [A151625(n): n in [1..30]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,4-j]*B[j+1,2]^n, {j,4}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
  • PARI
    a(n) = {10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3)} \\ Andrew Howroyd, May 07 2020
    
  • SageMath
    @CachedFunction
    def A151625(n): return sum((-1)^j*binomial(2*n+1,4-j)*binomial(j+1,2)^n for j in (1..4))
    [A151625(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022

Formula

a(n) = 10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3). - Andrew Howroyd, May 07 2020
From G. C. Greubel, Sep 07 2022: (Start)
G.f.: 4*x^3*(5 + 117*x - 749*x^2 - 831*x^3 + 6768*x^4 - 5022*x^5 - 3888*x^6)/((1-x)^4*(1-3*x)^3*(1-6*x)^2*(1-10*x)).
E.g.f.: exp(10*x) - (1+12*x)*exp(6*x) + 9*x*(1+2*x)*exp(3*x) - x*(3 + 12*x + 4*x^2)*exp(x)/3. (End)

Extensions

Terms a(12) and beyond from Andrew Howroyd, May 07 2020