cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A154283 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(2*n+1,i) * binomial(k+2-i,2)^n, 0 <= k <= 2*(n-1).

Original entry on oeis.org

1, 1, 4, 1, 1, 20, 48, 20, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1, 1, 716, 37257, 450048, 1822014, 2864328, 1822014, 450048, 37257, 716, 1, 1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, 163809288, 49258935, 6030140, 247236, 2172, 1
Offset: 1

Views

Author

Roger L. Bagula, Jan 06 2009

Keywords

Comments

From Yahia Kahloune, Jan 30 2014: (Start)
In general, let b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,2,n).
With these coefficients we can calculate: Sum_{i=1..n} binomial(i+e-1,e)^p = Sum_{k=0..e*(p-1)} b(k,e,p)*binomial(n+e+k,e*p+k).
For example, A085438(n) = Sum_{i=1..n} binomial(1+i,2)^3 = T(3,0)*binomial(2+n,7) + T(3,1)*binomial(3+n,7) + T(3,2)*binomial(4+n,7) + T(3,3)*binomial(5+n,7) + T(3,4)*binomial(6+n,7) = (1/5040)*(90*n^7 + 630*n^6 + 1638*n^5 + 1890*n^4 + 840*n^3 - 48*n).
(End)
T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 06 2020

Examples

			Triangle begins:
  1;
  1,     4,       1;
  1,    20,      48,        20,           1;
  1,    72,     603,      1168,         603,           72,           1;
  1,   232,    5158,     27664,       47290,        27664,        5158,  232, 1;
  1,   716,   37257,    450048,     1822014,      2864328,     1822014, ...;
  1,  2172,  247236,   6030140,    49258935,    163809288,   242384856, ...;
  1,  6544, 1568215,  72338144,  1086859301,   6727188848, 19323413187, ...;
  1, 19664, 9703890, 811888600, 21147576440, 225167210712, ... ;
  ...
The T(2,1) = 4 permutations of 1122 with 1 descent are 1212, 1221, 2112, 2211. - _Andrew Howroyd_, May 15 2020
		

Crossrefs

Row sums are A000680.
Similar triangles for e=1..6: A173018 (or A008292), this sequence, A174266, A236463, A237202, A237252.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1,j)*Binomial(k-j+2,2)^n: j in [0..k]]): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Jun 13 2022
    
  • Maple
    A154283 := proc(n,k)
            (1-x)^(2*n+1)*add( (l*(l+1)/2)^n*x^(l-1),l=0..k+1) ;
            coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Feb 01 2013
  • Mathematica
    p[x_, n_]= (1-x)^(2*n+1)*Sum[(k*(k+1)/2)^n*x^k, {k, 0, Infinity}]/x;
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n,10}]//Flatten
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(2*n+1, i)*binomial(k+2-i, 2)^n)} \\ Andrew Howroyd, May 09 2020
    
  • SageMath
    def A154283(n,k): return sum((-1)^j*binomial(2*n+1, j)*binomial(k-j+2, 2)^n for j in (0..k))
    flatten([[A154283(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Jun 13 2022

Formula

T(n,k) = (-1) times coefficient of x^k in (x-1)^(2*n+1) * Sum_{k>=0} (k*(k+1)/2)^n *x^(k-1).
From Yahia Kahloune, Jan 29 2014: (Start)
Sum_{i=1..n} binomial(1+i,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+2+k,2*p+1).
binomial(n,2)^p = Sum_{k=0..2*p-2} T(p,k)*binomial(n+k,2*p). (End)
From Peter Bala, Dec 21 2019: (Start)
E.g.f. as a continued fraction: (1-x)/(1-x + ( 1-exp((1-x)^2*t))*x/(1-x + (1-exp(2*(1-x)^2*t))*x/(1-x + (1-exp(3*(1-x)^2*t))*x/(1-x + ... )))) = 1 + x*t + x*(x^2 + 4*x + 1)*t^2/2! + x*(x^4 + 20*x^3 + 48*x^2 + 20*x + 1)*t^3/3! + ... (use Prodinger equation 1.1).
The sequence of alternating row sums (unsigned) [1, 1, 2, 10, 104, 1816,...] appears to be A005799. (End)

Extensions

Edited by N. J. A. Sloane, Jan 30 2014 following suggestions from Yahia Kahloune (among other things, the signs of all terms have been reversed).
Edited by Andrew Howroyd, May 09 2020

A151657 Number of permutations of 7 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 1225, 818300, 160310458, 22727054364, 2892619063243, 354402440786800, 42837393111682484, 5153280785356119360, 618914057659003904189, 74290570601695876667092, 8915697686087571194412590, 1069916360274028756641650036, 128391238501628502906890984271
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Programs

  • PARI
    a(n) = {120^n - (7*n + 1)*36^n + binomial(7*n+1, 2)*8^n - binomial(7*n+1, 3)} \\ Andrew Howroyd, May 07 2020

Formula

a(n) = 120^n - (7*n + 1)*36^n + binomial(7*n+1, 2)*8^n - binomial(7*n+1, 3). - Andrew Howroyd, May 07 2020

Extensions

Terms a(7) and beyond from Andrew Howroyd, May 07 2020
Showing 1-2 of 2 results.