cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A334774 Triangle read by rows: T(n,k) is the number of permutations of 2 indistinguishable copies of 1..n with exactly k local maxima.

Original entry on oeis.org

1, 3, 3, 9, 57, 24, 27, 705, 1449, 339, 81, 7617, 48615, 49695, 7392, 243, 78357, 1290234, 3650706, 2234643, 230217, 729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934, 2187, 7944321, 686779323, 9080961729, 30829608729, 31435152267, 9159564513, 529634931
Offset: 1

Views

Author

Andrew Howroyd, May 11 2020

Keywords

Comments

Also the number of permutations of 2 indistinguishable copies of 1..n with exactly k-1 peaks. A peak is an interior maximum.

Examples

			Triangle begins:
    1;
    3,      3;
    9,     57,       24;
   27,    705,     1449,       339;
   81,   7617,    48615,     49695,      7392;
  243,  78357,  1290234,   3650706,   2234643,    230217;
  729, 791589, 30630618, 197457468, 314306943, 128203119, 9689934;
  ...
The T(2,1) = 3 permutations of 1122 with 1 local maxima are 1122, 1221, 2211.
The T(2,2) = 3 permutations of 1122 with 2 local maxima are 1212, 2112, 2121.
The T(2,1) = 3 permutations of 1122 with 0 peaks are 2211, 2112, 1122.
The T(2,2) = 3 permutations of 1122 with 1 peak are 2121, 1221, 1212.
		

Crossrefs

Columns k=1..6 are A000244(n-1), 3*A152494, 3*A152495, 3*A152496, 3*A152497, 3*A152498.
Row sums are A000680.
Main diagonal is A334775.
The version for permutations of 1..n is A008303(n,k-1).

Programs

  • PARI
    PeaksBySig(sig, D)={
      my(F(lev,p,q) = my(key=[lev,p,q], z); if(!mapisdefined(FC, key, &z),
        my(m=sig[lev]); z = if(lev==1, if(p==0, binomial(m-1, q), 0), sum(i=0, p, sum(j=0, min(m-i, q), self()(lev-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) )));
        mapput(FC, key, z)); z);
      local(FC=Map());
      vector(#D, i, F(#sig, D[i], 0));
    }
    Row(n)={ PeaksBySig(vector(n,i,2), [0..n-1]) }
    { for(n=1, 8, print(Row(n))) }

Formula

T(n,k) = F(2,n,k-1,0) where F(m,n,p,q) = Sum_{i=0..p} Sum_{j=0..min(m-i, q)} F(m, n-1, p-i, q-j+i) * binomial(m+2*(q-j)+1, 2*q+i-j+1) * binomial(q-j+i, i) * binomial(q+1, j) for n > 1 with F(m,1,0,q) = binomial(m-1, q), F(m,1,p,q) = 0 for p > 0.
A334776(n) = Sum_{k=1..n} (k-1)*T(n,k).
A334777(n) = Sum_{k=1..n} k*T(n,k).

A174266 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(3*n+1,i) * binomial(k+3-i,3)^n, 0 <= k <= 3*(n-1).

Original entry on oeis.org

1, 1, 9, 9, 1, 1, 54, 405, 760, 405, 54, 1, 1, 243, 6750, 49682, 128124, 128124, 49682, 6750, 243, 1, 1, 1008, 83736, 1722320, 12750255, 40241088, 58571184, 40241088, 12750255, 1722320, 83736, 1008, 1, 1, 4077, 922347, 45699447, 789300477, 5904797049, 21475242671, 40396577931, 40396577931, 21475242671, 5904797049, 789300477, 45699447, 922347, 4077, 1
Offset: 1

Views

Author

Roger L. Bagula, Mar 14 2010

Keywords

Comments

From Yahia Kahloune, Jan 30 2014: (Start)
In general, let b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,3,n).
With these coefficients we can calculate: Sum_{i=1..n} binomial(i+e-1,e)^p = Sum_{i=0..e*(p-1)} b(i,e,p)*binomial(n+e+i,e*p+1).
For example, A086020(n) = Sum_{i=1..n} binomial(2+i, 3)^2 = T(2,0)*binomial(n+3, 7) + T(2,1)*binomial(n+4,7) + T(2,2)*binomial(n+5,7) + T(2,3)*binomial(n+6,7) = (1/5040)*(20*n^7 + 210*n^6 + 854*n^5 + 1680*n^4 + 1610*n^3 + 630*n^2 + 36*n). (End)
T(n,k) is the number of permutations of 3 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 06 2020

Examples

			Triangle begins:
  1;
  1,      9,         9,            1;
  1,     54,       405,          760,            405,       54,        1;
  1,    243,      6750,        49682,         128124,   128124,    49682, ... ;
  1,   1008,     83736,      1722320,       12750255, 40241088, 58571184, ... ;
  1,   4077,    922347,     45699447,      789300477, ... ;
  1,  16362,   9639783,   1063783164,    38464072830, ... ;
  1,  65511,  98361900,  23119658500,  1641724670475, ... ;
  1, 262116, 992660346, 484099087156, 64856779908606, ... ;
...
The T(2,1) = 9 permutations of 111222 with 1 descent are: 112221, 112212, 112122, 122211, 122112, 121122, 222111, 221112, 211122. - _Andrew Howroyd_, May 07 2020
		

Crossrefs

Row sums are A014606.
Similar triangles for e=1..6: A173018 (or A008292), A154283, this sequence, A236463, A237202, A237252.

Programs

  • Mathematica
    (* First program *)
    p[n_, x_]:= p[n,x]= (1-x)^(3*n+1)*Sum[(Binomial[k+1, 3])^n*x^k, {k, 0, Infinity}]/x^2;
    Table[CoefficientList[p[x, n], x], {n,10}]//Flatten (* corrected by G. C. Greubel, Mar 26 2022 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= Sum[(-1)^(k-j+1)*Binomial[3*n+1, k-j+1]*(j*(j^2-1)/2)^n, {j, 0, k+1}]/(3^n);
    Table[T[n, k], {n,10}, {k,3*n-2}]//Flatten (* G. C. Greubel, Mar 26 2022 *)
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(3*n+1, i)*binomial(k+3-i, 3)^n)} \\ Andrew Howroyd, May 06 2020
    
  • Sage
    @CachedFunction
    def T(n, k): return (1/3^n)*sum( (-1)^(k-j+1)*binomial(3*n+1, k-j+1)*(j*(j^2-1)/2)^n for j in (0..k+1) )
    flatten([[T(n, k) for k in (1..3*n-2)] for n in (1..10)]) # G. C. Greubel, Mar 26 2022

Formula

T(n,k) = [x^k] (1-x)^(3*n+1)*(Sum_{k>=0} (k*(k+1)*(k-1)/2)^n*x^k)/(3^n*x^2).
T(n,k) = T(n, 3*n-k).
From Yahia Kahloune, Jan 30 2014: (Start)
Sum_{i=1..n} binomial(2+i,3)^p = Sum_{i=0..3*p-3} T(p,i)*binomial(n+3+i,3*p+1).
binomial(n,3)^p = Sum_{i=0..3*p-3} T(p,i)*binomial(n+i,3*p). (End)
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator (x^2)D*(1/x)*D*(x^2)*D, where D denotes the derivative operator d/dx. Then (1/6^n)* E^n(x^2/(1 - x)^4) = (row n generating polynomial)/(1 - x)^(3*n+4) = Sum_{i=0..k} (-1)^i * binomial(3*n+1,i) * binomial(k+3-i,3)^n.
For example, when n = 3 we have 1/216*E^3(x^2/(1 - x)^4) = x^2 (1 + 243x + 6750x^2 + 49682x^3 + 128124x^4 + 128124x^5 + 49682x^6 + 6750x^7 + 243x^8 + x^9)/(1 - x)^13. (End)

Extensions

Edited by Andrew Howroyd, May 06 2020

A236463 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(4*n+1,i) * binomial(k+4-i,4)^n, 0 <= k <= 4*(n-1).

Original entry on oeis.org

1, 1, 16, 36, 16, 1, 1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1, 1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1, 1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680
Offset: 1

Views

Author

Yahia Kahloune, Feb 01 2014

Keywords

Comments

In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,4,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 4 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020

Examples

			T(n,0) = 1;
T(n,1) = 5^n - (4*n+1);
T(n,2) = 15^n - (4*n+1)*5^n + C(4*n+1,2);
T(n,3) = 35^n - (4*n+1)*15^n + C(4*n+1,2)*5^n - C(4*n+1,3);
T(n,4) = 70^n - (4*n+1)*35^n + C(4*n+1,2)*15^n - C(4*n+1,3)*5^n + C(4*n+1,4).
Triangle T(n,k) begins:
1,
1, 16, 36, 16, 1;
1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1;
1, 608, 40136, 724320, 4961755, 15018688, 21571984, 15018688, 4961755, 724320, 40136, 608, 1;
1, 3104, 693960, 37229920, 733059110, 6501577152, 29066972368, 69830127680, 93200908410, 69830127680, 29066972368, 6501577152, 733059110, 37229920, 693960, 3104, 1;
1, 15600, 11000300, 1558185200, 75073622025, 1585757994496, 16938467955200, 99825129369600, 342907451401150, 710228619472800, 903546399077256, 710228619472800, 342907451401150, 99825129369600, 16938467955200, 1585757994496, 75073622025, 1558185200, 11000300, 15600, 1;
  ...
Example:
Sum_{i=1..n} C(3+i,4)^3 = C(n+4,13) + 112*C(n+5,13) + 1828*C(n+6,13) + 8464*C(n+7,13) + 13840*C(n+8,13) + 8464*C(n+9,13) + 1828*C(n+10,13) + 112*C(n+11,13) + C(+12,13).
C(n,4)^3 = C(n,12) + 112*C(n+1,12) + 1828*C(n+2,12) + 8464*C(n+3,12) + 13840*C(n+4,12) + 8464*C(n+5,12) + 1828*C(n+6,12) + 112*C(n+7,12) + C(n+8,12).
		

Crossrefs

Row sums are A014608.
Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, this sequence, A237202, A237252.
Sum_{i=1..n} binomial(3+i,4)^p for p=2..3 gives: A086023, A086024.

Programs

  • Mathematica
    b[k_, 4, p_] := Sum[(-1)^i*Binomial[4*p+1, i]*Binomial[k-i, 4]^p /. k -> 4+i, {i, 0, k-4}]; row[p_] := Table[b[k, 4, p], {k, 4, 4*p}]; Table[row[p], {p, 1, 6}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(4*n+1, i)*binomial(k+4-i, 4)^n)} \\ Andrew Howroyd, May 08 2020

Formula

Sum_{i=1..n} binomial(3+i,4)^p = Sum{k=0..4*(p-1)} T(p,k) * binomial(n+4+k, 4*p+1).
binomial(n,4)^p = Sum_{k=0..4*(p-1)} T(p,k) * binomial(n+k, 4*p).

Extensions

a(36) corrected by Vincenzo Librandi, Feb 14 2014
Edited by Andrew Howroyd, May 08 2020

A005799 Generalized Euler numbers of type 2^n.

Original entry on oeis.org

1, 1, 2, 10, 104, 1816, 47312, 1714000, 82285184, 5052370816, 386051862272, 35917232669440, 3996998043812864, 524203898507631616, 80011968856686405632, 14061403972845412526080, 2818858067801804443910144
Offset: 0

Views

Author

Keywords

Comments

Also, a(n) equals the number of alternating permutations (p(1),...,p(2n)) of the multiset {1,1,2,2,...,n,n} satisfying p(1) <= p(2) > p(3) <= p(4) > p(5) <= ... <= p(2n). Hence, A275801(n) <= a(n) <= A275829(n). - Max Alekseyev, Aug 10 2016
This is the BinomialMean transform of A000364 (see A075271 for definition of transform). - John W. Layman, Dec 04 2002
This sequence appears to be middle column in Poupard's triangle A008301.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Right edge of triangle A210108.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n < 0 or k < 0 then 0
    elif n = 0 then euler(k, 1)
    else T(n-1, k+1) - T(n-1, k) fi end:
    a := n -> (-2)^n*T(n, n); seq(a(n), n=0..16); # Peter Luschny, Aug 23 2017
  • Mathematica
    a[n_] := Sum[Binomial[n, i]Abs[EulerE[2i]], {i, 0, n}]/2^n

Formula

a(n) = (1/2^n) * Sum_{i=0..n} binomial(n, i) * A000364(i).
From Sergei N. Gladkovskii, Dec 27 2012, Oct 11 2013, Oct 27 2013, Jan 08 2014: (Start) Continued fractions:
G.f.: A(x) = 1/G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+1)/G(k+1)).
G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2*(2*k+1)^2/(x^2*(k+1)^2*(2*k+1)^2 - (4*x*k^2 + 2*x*k + x - 1)*( 4*x*k^2 + 10*x*k + 7*x - 1)/Q(k+1)).
G.f.: R(0), where R(k) = 1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/(1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/R(k+1)))).
G.f.: 2/(x*Q(0)), where Q(k) = 2/x - 1 - (2*k+1)^2/(1 - (2*k+2)^2/Q(k+1)). (End)
a(n) ~ 2^(3*n+3) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, May 30 2015
a(n) = 2^n * Sum_{k=0..n} (-1)^k*binomial(n, k)*euler(n+k, 1). - Peter Luschny, Aug 23 2017
From Peter Bala, Dec 21 2019: (Start)
O.g.f. as a continued fraction: 1/(1 - x/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 15*x/(1 - 15*x/(1 - ... - n*(2*n-1)*x/(1 - n*(2*n-1)*x/(1 - ...))))))))) - apply Bala, Proposition 3, with a = 0, b = 1 and replace x with x/2.
Conjectures:
E.g.f. as a continued fraction: 2/(2 - (1-exp(-4*t))/(2 - (1-exp(-8*t))/(2 - (1-exp(-12*t))/(2 - ... )))) = 1 + t + 2*t^2/2! + 10*t^3/3! + 104*t^4/4! + ....
Cf. A000657. [added April 18 2024: for a proof of this conjecture see Fu et al., Section 4.3.]
a(n) = (-2)^(n+1)*Sum_{k = 0..floor((n-1)/2)} binomial(n,2*k+1)*(2^(2*n-2*k) - 1)*Bernoulli(2*n-2*k)/(2*n-2*k) for n >= 1. (End)

Extensions

Edited by Dean Hickerson, Dec 10 2002

A237252 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(6*n+1,i) * binomial(k+6-i,6)^n, 0 <= k <= 6*(n-1).

Original entry on oeis.org

1, 1, 36, 225, 400, 225, 36, 1, 1, 324, 15606, 233300, 1424925, 4050864, 5703096, 4050864, 1424925, 233300, 15606, 324, 1, 1, 2376, 554931, 35138736, 879018750, 10490842656, 66555527346, 239677178256, 509723668476, 654019630000, 509723668476, 239677178256, 66555527346, 10490842656, 879018750, 35138736, 554931, 2376, 1
Offset: 1

Views

Author

Yahia Kahloune, Feb 05 2014

Keywords

Comments

In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,6,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 6 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 06 2020

Examples

			For example :
  T(n,0) = 1;
  T(n,1) = 7^n - (6*n+1);
  T(n,2) = 28^n - (6*n+1)*7^n + C(6*n+1,2);
  T(n,3) = 84^n - (6*n+1)*28^n + C(6*n+1,2)*7^n + C(6*n+1,3);
  T(n,4) = 210^n - (6*n+1)*84^n + C(6*n+1,2)*28^n - C(6*n+1,3)*7^n + C(6*n+1,4).
Triangle T(n,k) begins:
 1;
 1, 36, 225, 400, 225, 36, 1;
 1, 324, 15606, 233300, 1424925, 4050864, 5703096, 4050864, 1424925, 233300, 15606, 324, 1;
 1, 2376, 554931, 35138736, 879018750, 10490842656, 66555527346, 239677178256, 509723668476, 654019630000, 509723668476, 239677178256, 66555527346, 10490842656, 879018750, 35138736, 554931, 2376, 1;
 1, 16776, 16689816, 3656408776, 286691702976, 10255094095176, 192698692565176, 2080037792142216, 13690633212385551, 57229721552316976, 156200093827061616, 283397584598631216, 345271537321293856, 283397584598631216, 156200093827061616, 57229721552316976,13690633212385551, 2080037792142216, 192698692565176, 10255094095176, 286691702976, 3656408776, 16689816, 16776, 1;
...
Example:
Sum_{i=1..n} C(5+i,6)^2 = A086027(n) = C(n+6,13) + 36*C(n+7,13) + 225*C(n+8,13) + 400*C(n+9,13) + 225*C(n+10,13) + 36*C(n+11,13) + C(n+12,13).
binomial(n,6)^2 = C(n,12) + 36*C(n+1,12) + 225*C(n+2,12) + 400*C(n+3,12) + 225*C(n+4,12) + 36*C(n+5,12) + C(n+6,12).
		

Crossrefs

Columns k=2..6 are A151651, A151652, A151653, A151654, A151655.
Row sums are A248814.
Similar triangles for e=1..5: A173018 (or A008292), A154283, A174266, A236463, A237202.
Sum_{i=1..n} binomial(5+i,6)^p for p=1..3 gives: A000580, A086027, A086028.

Programs

  • Mathematica
    b[k_, 6, p_] := Sum[(-1)^i*Binomial[6*p+1, i]*Binomial[k-i, 6]^p /. k -> 6+i, {i, 0, k-6}]; row[p_] := Table[b[k, 6, p], {k, 6, 6*p}]; Table[row[p], {p, 1, 5}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(6*n+1, i)*binomial(k+6-i, 6)^n)} \\ Andrew Howroyd, May 06 2020

Formula

Sum_{i=1..n} binomial(5+i,6)^p = Sum{k=0..6*(p-1)} T(p,k) * binomial(n+6+k, 6*p+1).
binomial(n,6)^p = Sum_{k=0..6*(p-1)} T(p,k) * binomial(n+k, 6*p).

Extensions

Edited by Andrew Howroyd, May 06 2020

A122193 Triangle T(n,k) of number of loopless multigraphs with n labeled edges and k labeled vertices and without isolated vertices, n >= 1; 2 <= k <= 2*n.

Original entry on oeis.org

1, 1, 6, 6, 1, 24, 114, 180, 90, 1, 78, 978, 4320, 8460, 7560, 2520, 1, 240, 6810, 63540, 271170, 604800, 730800, 453600, 113400, 1, 726, 43746, 774000, 6075900, 25424280, 61923960, 90720000, 78813000, 37422000, 7484400
Offset: 1

Views

Author

Vladeta Jovovic, Aug 24 2006

Keywords

Comments

T(n,k) equals the number of arrangements on a line of n (nondegenerate) finite closed intervals having k distinct endpoints. See the 'IBM Ponder This' link. An example is given below. - Peter Bala, Jan 28 2018
T(n,k) equals the number of alignments of length k of n strings each of length 2. See Slowinski. Cf. A131689 (alignments of strings of length 1) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018

Examples

			Triangle begins:
  1;
  1,  6,   6;
  1, 24, 114,  180,   90;
  1, 78, 978, 4320, 8460, 7560, 2520;
  ...
From _Francisco Santos_, Nov 17 2017: (Start)
For n=3 edges and k=4 vertices there are three loopless multigraphs without isolated vertices: a path, a Y-graph, and the multigraph {12, 34, 34}. The number of labelings in each is 3!4!/a, where a is the number of automorphisms. This gives respectively 3!4!/2 = 72, 3!4!/6 = 24 and 3!4!/8 = 18, adding up to 72 + 24 + 18 = 114. (End)
From _Peter Bala_, Jan 28 2018: (Start)
T(2,3) = 6: Consider 2 (nondegenerate) finite closed intervals [a, b] and [c, d]. There are 6 arrangements of these two intervals with 3 distinct endpoints:
  ...a--b--d....  a < b = c < d
  ...a...c--b...  a < c < b = d
  ...a--d...b...  a = c < d < b
  ...a--b...d...  a = c < b < d
  ...c...a--d...  c < a < b = d
  ...c--a--b....  c < a = d < b
T(2,4) = 6: There are 6 arrangements of the two intervals with 4 distinct endpoints:
  ...a--b...c--d.....  no intersection a < b < c < d
  ...a...c...b...d...  a < c < b < d
  ...a...c--d...b....  [c,d] is a proper subset of [a,b]
  ...c...a...d...b...  c < a < d < b
  ...c...a--b...d... [a,b] is a proper subset of [c,d]
  ...c--d...a--b.....  no intersection c < d < a < b.
Sums of powers of triangular numbers:
Row 2: Sum_{i = 2..n-1} C(i,2)^2 = C(n,3) + 6*C(n,4) + 6*C(n,5);
Row 3: Sum_{i = 2..n-1} C(i,2)^3 = C(n,3) + 24*C(n,4) + 114*C(n,5) + 180*C(n,6) + 90*C(n,7). See A024166 and A085438.
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 19*x^2 + 1147*x^3 + 145606*x^4 + 31784062*x^5 + ... )^4
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 37*x^2 + 4453*x^3 + 1126375*x^4 + 489185863*x^5 + ... )^9
exp( Sum_{n >= 1} R(n,4)*x^n/n ) = (1 + x + 61*x^2 + 12221*x^3 + 5144411*x^4 + 3715840571*x^5 + ... )^16 (End)
From _Peter Bala_, Feb 04 2018: (Start)
T(3,3) = 24 alignments of length 3 of 3 strings each of length 2. Examples include
  (i) A B -    (ii) A - B
      - C D         - C D
      - E F         E F -
There are 18 alignments of type (i) with two gap characters in one of the columns (3 ways of putting 2 gap characters in a column x 2 ways to place the other letter in the row which doesn't yet have a gap character x 3 columns: there are 6 alignments of type (ii) with a single gap character in each column (3 ways to put a single gap character in the first column x 2 ways to then place a single gap character in the second column). (End)
		

Crossrefs

Row sums give A055203.
For Sum_{i = 2..n} C(i,2)^k see A024166 (k = 2), A085438 - A085442 ( k = 3 thru 7).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A122193 := (n,k) -> A078739(n,k)*k!/2^n:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A122193(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n - r) Binomial[n, r] StirlingS2[n + r, k], {r, 0, n}]; Table[t[n, k] k!/2^n, {n, 6}, {k, 2, 2 n}] // Flatten (* Michael De Vlieger, Nov 18 2017, after Jean-François Alcover at A078739 *)

Formula

Double e.g.f.: exp(-x)*Sum_{n>=0} exp(binomial(n,2)*y)*x^n/n!.
T(n,k) = S_{2,2}(n,k)*k!/2^n; S_{2,2} the generalized Stirling numbers A078739. - Peter Luschny, Mar 25 2011
From Peter Bala, Jan 28 2018: (Start)
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
T(n,k) = k*(k-1)/2*( T(n-1,k) + 2*T(n-1,k-1) + T(n-1,k-2) ) for 2 < k <= 2*n with boundary conditions T(n,2) = 1 for n >= 1 and T(n,k) = 0 if (k < 2) or (k > 2*n).
n-th row polynomial R(n,x) = Sum_{i >= 2} (i*(i-1)/2)^n * x^i/(1+x)^(i+1) for n >= 1.
1/(1-x)*R(n,x/(1-x)) = Sum_{i >= 2} (i*(i-1)/2)^n*x^i for n >= 1.
R(n,x) = 1/2^n*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*F(n+k,x), where F(n,x) = Sum_{k = 0..n} k!*Stirling2(n,k)*x^k is the n-th Fubini polynomial, the n-th row polynomial of A131689.
R(n,x) = x/(1+x)*1/2^n*Sum_{k = 0..n} binomial(n,k)*F(n+k,x) for n >= 1.
The polynomials Sum_{k = 2..2*n} T(n,k)*x^(k-2)*(1-x)^(2*n-k) are the row polynomials of A154283.
A154283 * A007318 equals the row reverse of this array.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k) = ( binomial(x,2) )^n. Equivalently, Sum_{k = 2..2*n} (-1)^k*T(n,k)*binomial(x+k,k) = ( binomial(x+2,2) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)*binomial(x,k) = x^n.
Sum_{i = 2..n-1} (i*(i-1)/2)^m = Sum_{k = 2..2*m} T(m,k) * binomial(n,k+1) for m >= 1. See Examples below.
R(n,x) = x^2 o x^2 o ... o x^2 (n factors), where o is the black diamond product of power series defined in Dukes and White. Note the polynomial x o x o ... o x (n factors) is the n-th row polynomial of A019538.
x^2*R(n,-1-x) = (1+x)^2*R(n,x) for n >= 1.
R(n+1,x) = 1/2*x^2*(d/dx)^2 ((1+x)^2*R(n,x)).
The zeros of R(n,x) belong to the interval [-1, 0].
Alternating row sums equal 1, that is R(n,-1) = 1.
R(n,-2) = 4*R(n,1) = 4*A055203(n).
4^n*Sum_{k = 2..2*n} T(n,k)*(-1/2)^k appears to equal (-1)^(n+1)*A005799(n) for n >= 1.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^2*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 2..2*n} T(n,k)*binomial(x,k-2) = binomial(x,2)^n - 2*binomial(x+1,2)^n + binomial(x+2,2)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane (the corresponding property also holds for the row polynomials of A019538 with a factor of x removed). (End)
From Peter Bala, Mar 08 2018: (Start)
n-th row polynomial R(n,x) = coefficient of (z_1)^2 * ... * (z_n)^2 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The n-th row of the table is given by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318 and v_n is the sequence (0, 0, 1, 3^n, 6^n, 10^n, ...) regarded as an infinite column vector, where 1, 3, 6, 10, ... is the sequence of triangular numbers A000217. Cf. A087127. (End)

Extensions

Definition corrected by Francisco Santos, Nov 17 2017

A237202 Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(5*n+1,i) * binomial(k+5-i,5)^n, 0 <= k <= 5*(n-1).

Original entry on oeis.org

1, 1, 25, 100, 100, 25, 1, 1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1, 1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275
Offset: 1

Views

Author

Yahia Kahloune, Feb 05 2014

Keywords

Comments

In general, define b(k,e,p) = Sum_{i=0..k} (-1)^i*binomial(e*p+1,i)*binomial(k+e-i,e)^p. Then T(n,k) = b(k,5,n).
Using these coefficients we can obtain formulas for binomial(n,e)^p and for Sum_{i=1..n} binomial(e-1+i,e)^p.
In particular:
binomial(n, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+k, e*p).
Sum_{i=1..n} binomial(e-1+i, e)^p = Sum_{k=0..e*(p-1)} b(k,e,p) * binomial(n+e+k, e*p+1).
T(n,k) is the number of permutations of 5 indistinguishable copies of 1..n with exactly k descents. A descent is a pair of adjacent elements with the second element less than the first. - Andrew Howroyd, May 08 2020

Examples

			T(n,0) = 1;
T(n,1) = 6^n - (5*n+1);
T(n,2) = 21^n - (5*n+1)*6^n + C(5*n+1,2);
T(n,3) = 56^n - (5*n+1)*21^n + C(5*n+1,2)*6^n - C(5*n+1,3) ;
T(n,4) = 126^n - (5*n+1)*56^n + C(5*n+1,2)*21^n - C(5*n+1,3)*6^n  + C(5*n+1,4).
Triangle T(n,k) begins:
1;
1, 25, 100, 100, 25, 1;
1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1;
1, 1275, 167475, 6021225, 84646275, 554083761, 1858142825, 3363309675, 3363309675, 1858142825, 554083761, 84646275, 6021225, 167475, 125, 1;
1, 7750, 3882250, 447069750, 18746073375, 359033166276, 3575306548500, 20052364456500, 66640122159000, 135424590593500, 171219515211316, 135424590593500, 66640122159000, 20052364456500, 3575306548500, 359033166276, 18746073375, 447069750, 3882250, 7750, 1;
...
Example:
Sum_{i=1..n} C(4+i,5)^3 = C(n+5,16) + 200*C(n+6,16) + 5925*(n+7,16) + 52800*C(n+8,16) + 182700*C(n+9,16) + 273504*C(n+10,16) + 182700*C(n+11,16) + 52800*C(n+12,16) + 5925*C(n+13,16) + 200*C(n+14,16) + C(n+15,16).
C(n,5)^3 = C(n,15) + 200*C(n+1,15) + 5925*C(n+2,15) + 52800*C(n+3,15) + 182700*C(n+4,15) + 273504*C(n+5,15) + 182700*C(n+6,15) + 52800*C(n+7,15) + 5925*C(n+8,15) + 200*C(n+9,15) + C(n+10,15).
		

Crossrefs

Columns k=2..5 are A151647, A151648, A151649, A151650.
Row sums are A014609.
Similar triangles for e=1..6: A173018 (or A008292), A154283, A174266, A236463, this sequence, A237252.
Sum_{i=1..n} binomial(4+i,5)^p for p=2..3 gives: A086025, A086026.

Programs

  • Mathematica
    b[k_, 5, p_] := Sum[(-1)^i*Binomial[5*p+1, i]*Binomial[k-i, 5]^p /. k -> 5+i, {i, 0, k-5}]; row[p_] := Table[b[k, 5, p], {k, 5, 5*p}]; Table[row[p], {p, 1, 5}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
  • PARI
    T(n,k)={sum(i=0, k, (-1)^i*binomial(5*n+1, i)*binomial(k+5-i, 5)^n)} \\ Andrew Howroyd, May 08 2020

Formula

Sum_{i=1..n} binomial(4+i,5)^p = Sum{k=0..5*(p-1)} T(p,k) * binomial(n+5+k, 5*p+1).
binomial(n,5)^p = Sum_{k=0..5*(p-1)} T(p,k) * binomial(n+k, 5*p).

Extensions

Edited by Andrew Howroyd, May 08 2020

A334781 Array read by antidiagonals: T(n,k) = Sum_{i=1..n} binomial(1+i,2)^k.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 10, 10, 4, 0, 1, 28, 46, 20, 5, 0, 1, 82, 244, 146, 35, 6, 0, 1, 244, 1378, 1244, 371, 56, 7, 0, 1, 730, 8020, 11378, 4619, 812, 84, 8, 0, 1, 2188, 47386, 108020, 62003, 13880, 1596, 120, 9, 0, 1, 6562, 282124, 1047386, 867395, 256484, 35832, 2892, 165, 10
Offset: 0

Views

Author

Andrew Howroyd, May 15 2020

Keywords

Examples

			Array begins:
===============================================================
n\k | 0  1    2     3      4        5         6           7
----|----------------------------------------------------------
  0 | 0  0    0     0      0        0         0           0 ...
  1 | 1  1    1     1      1        1         1           1 ...
  2 | 2  4   10    28     82      244       730        2188 ...
  3 | 3 10   46   244   1378     8020     47386      282124 ...
  4 | 4 20  146  1244  11378   108020   1047386    10282124 ...
  5 | 5 35  371  4619  62003   867395  12438011   181141499 ...
  6 | 6 56  812 13880 256484  4951496  98204132  1982230040 ...
  7 | 7 84 1596 35832 871140 22161864 580094436 15475158552 ...
  ...
		

Crossrefs

Rows n=0..3 are A000004, A000012, A034472, A074508.
Main diagonal is A249564(n > 0).
Cf. A154283 (coefficients).

Programs

  • PARI
    T(n,k) = {sum(i=1, n, binomial(1+i,2)^k)}

Formula

T(n,k) = Sum_{i=0..2*(k-1)} A154283(k,i) * binomial(n+2+i, 2*k+i) for k > 0.

A151624 Number of permutations of 2 indistinguishable copies of 1..n with exactly 2 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 1, 48, 603, 5158, 37257, 247236, 1568215, 9703890, 59226357, 358722928, 2163496611, 13017647646, 78225458401, 469740168924, 2819689366191, 16922139539626, 101545622110989, 609314411814024, 3656015481903355, 21936500845191030, 131620291694585721
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=2 of A154283.

Programs

  • Magma
    [(&+[(-1)^j*Binomial(2*n+1,2-j)*Binomial(j+2,2)^n: j in [0..2]]): n in [1..40]]; // G. C. Greubel, Jun 19 2022
    
  • Mathematica
    Table[6^n -(2*n+1)*3^n +n*(2*n+1), {n,40}] (* G. C. Greubel, Jun 19 2022 *)
  • PARI
    a(n) = {6^n - (2*n + 1)*3^n + n*(2*n + 1)} \\ Andrew Howroyd, May 06 2020
    
  • PARI
    Vec(x^2*(1 + 33*x - 33*x^2 - 81*x^3) / ((1 - x)^3*(1 - 3*x)^2*(1 - 6*x)) + O(x^25)) \\ Colin Barker, Jul 16 2020
    
  • SageMath
    [6^n -(2*n+1)*3^n +binomial(2*n+1,2) for n in (1..40)] # G. C. Greubel, Jun 19 2022

Formula

a(n) = 6^n - (2*n + 1)*3^n + n*(2*n + 1). - Andrew Howroyd, May 06 2020
From Colin Barker, Jul 16 2020: (Start)
G.f.: x^2*(1 + 33*x - 33*x^2 - 81*x^3) / ((1 - x)^3*(1 - 3*x)^2*(1 - 6*x)).
a(n) = 15*a(n-1) - 84*a(n-2) + 226*a(n-3) - 309*a(n-4) + 207*a(n-5) - 54*a(n-6) for n>6.
(End)
E.g.f.: x*(3+2*x)*exp(x) - (1+6*x)*exp(3*x) + exp(6*x). - G. C. Greubel, Jun 19 2022

Extensions

Terms a(12) and beyond from Andrew Howroyd, May 06 2020

A151625 Number of permutations of 2 indistinguishable copies of 1..n with exactly 3 adjacent element pairs in decreasing order.

Original entry on oeis.org

0, 0, 20, 1168, 27664, 450048, 6030140, 72338144, 811888600, 8742609264, 91700484132, 945739871600, 9647920866016, 97729381122976, 985430937715404, 9906926101717184, 99407643757824680, 996242539625306512, 9976235831375328564, 99850100363120616144
Offset: 1

Views

Author

R. H. Hardin, May 29 2009

Keywords

Crossrefs

Column k=3 of A154283.

Programs

  • Magma
    A151625:= func< n | (&+[(-1)^j*Binomial(2*n+1,4-j)*Binomial(j+1,2)^n: j in [1..4]]) >;
    [A151625(n): n in [1..30]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    With[{B=Binomial}, Table[Sum[(-1)^j*B[2n+1,4-j]*B[j+1,2]^n, {j,4}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *)
  • PARI
    a(n) = {10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3)} \\ Andrew Howroyd, May 07 2020
    
  • SageMath
    @CachedFunction
    def A151625(n): return sum((-1)^j*binomial(2*n+1,4-j)*binomial(j+1,2)^n for j in (1..4))
    [A151625(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022

Formula

a(n) = 10^n - (2*n + 1)*6^n + binomial(2*n+1, 2)*3^n - binomial(2*n+1, 3). - Andrew Howroyd, May 07 2020
From G. C. Greubel, Sep 07 2022: (Start)
G.f.: 4*x^3*(5 + 117*x - 749*x^2 - 831*x^3 + 6768*x^4 - 5022*x^5 - 3888*x^6)/((1-x)^4*(1-3*x)^3*(1-6*x)^2*(1-10*x)).
E.g.f.: exp(10*x) - (1+12*x)*exp(6*x) + 9*x*(1+2*x)*exp(3*x) - x*(3 + 12*x + 4*x^2)*exp(x)/3. (End)

Extensions

Terms a(12) and beyond from Andrew Howroyd, May 07 2020
Showing 1-10 of 17 results. Next