A088990
Triangle related to generalized Euler numbers of type 2^n (A005799).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 8, 1, 0, 1, 51, 51, 1, 0, 1, 310, 1194, 310, 1, 0, 1, 1865, 21790, 21790, 1865, 1, 0, 1, 11196, 357975, 975656, 357975, 11196, 1, 0, 1, 67183, 5603421, 35471987, 35471987, 5603421, 67183, 1
Offset: 0
A154283
Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(2*n+1,i) * binomial(k+2-i,2)^n, 0 <= k <= 2*(n-1).
Original entry on oeis.org
1, 1, 4, 1, 1, 20, 48, 20, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1, 1, 716, 37257, 450048, 1822014, 2864328, 1822014, 450048, 37257, 716, 1, 1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, 163809288, 49258935, 6030140, 247236, 2172, 1
Offset: 1
Triangle begins:
1;
1, 4, 1;
1, 20, 48, 20, 1;
1, 72, 603, 1168, 603, 72, 1;
1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1;
1, 716, 37257, 450048, 1822014, 2864328, 1822014, ...;
1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, ...;
1, 6544, 1568215, 72338144, 1086859301, 6727188848, 19323413187, ...;
1, 19664, 9703890, 811888600, 21147576440, 225167210712, ... ;
...
The T(2,1) = 4 permutations of 1122 with 1 descent are 1212, 1221, 2112, 2211. - _Andrew Howroyd_, May 15 2020
- Andrew Howroyd, Table of n, a(n) for n = 1..1600 (rows 1..40)
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 12.
- Helmut Prodinger, On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs , arXiv:1102.5186 [math.CO], 2011.
-
[(&+[(-1)^j*Binomial(2*n+1,j)*Binomial(k-j+2,2)^n: j in [0..k]]): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Jun 13 2022
-
A154283 := proc(n,k)
(1-x)^(2*n+1)*add( (l*(l+1)/2)^n*x^(l-1),l=0..k+1) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Feb 01 2013
-
p[x_, n_]= (1-x)^(2*n+1)*Sum[(k*(k+1)/2)^n*x^k, {k, 0, Infinity}]/x;
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n,10}]//Flatten
-
T(n,k)={sum(i=0, k, (-1)^i*binomial(2*n+1, i)*binomial(k+2-i, 2)^n)} \\ Andrew Howroyd, May 09 2020
-
def A154283(n,k): return sum((-1)^j*binomial(2*n+1, j)*binomial(k-j+2, 2)^n for j in (0..k))
flatten([[A154283(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Jun 13 2022
Edited by
N. J. A. Sloane, Jan 30 2014 following suggestions from
Yahia Kahloune (among other things, the signs of all terms have been reversed).
A000657
Median Euler numbers (the middle numbers of Arnold's shuttle triangle).
Original entry on oeis.org
1, 1, 4, 46, 1024, 36976, 1965664, 144361456, 13997185024, 1731678144256, 266182076161024, 49763143319190016, 11118629668610842624, 2925890822304510631936, 895658946905031792553984, 315558279782214450517374976, 126780706777739389745128013824
Offset: 0
- V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom. 1 (1992), no. 2, 197-214.
- L. Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- V. I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., 47 (#1, 1992), 3-45 = Russian Math. Surveys, Vol. 47 (1992), 1-51.
- Ange Bigeni and Evgeny Feigin, Symmetric Dellac configurations, arXiv:1808.04275 [math.CO], 2018.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
-
a000657 n = a008280 (2 * n) n -- Reinhard Zumkeller, Nov 01 2013
-
Digits := 40: rr := array(1..40,1..40): rr[1,1] := 1: for i from 1 to 39 do rr[i+1,1] := subs(x=0,diff(1+tan(x),x$i)): od: for i from 2 to 40 do for j from 2 to i do rr[i,j] := rr[i,j-1]-(-1)^i*rr[i-1,j-1]: od: od: [seq(rr[2*i-1,i],i=1..20)];
# Alternatively after Alois P. Heinz in A000111:
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> b(n, n): seq(a(n), n = 0..15); # Peter Luschny, Oct 27 2017
-
max = 20; rr[1, 1] = 1; For[i = 1, i <= 2*max - 1, i++, rr[i + 1, 1] = D[1 + Tan[x], {x, i}] /. x -> 0]; For[i = 2, i <= 2*max, i++, For[j = 2, j <= i, j++, rr[i, j] = rr[i, j - 1] - (-1)^i*rr[i - 1, j - 1]]]; Table[rr[2*i - 1, i], {i, 1, max}] (* Jean-François Alcover, Jul 10 2012, after Maple *)
T[n_,0] := KroneckerDelta[n,0]; T[n_,k_] := T[n,k]=T[n,k-1]+T[n-1,n-k]; Table[T[2n,n], {n,0,16}] (* Oliver Seipel, Nov 24 2024, after Peter Luschny *)
-
a(n):=(-1)^(n)*sum(binomial(n,k)*euler(n+k),k,0,n); /* Vladimir Kruchinin, Apr 06 2015 */
-
# Algorithm of L. Seidel (1877)
def A000657_list(n) :
R = []; A = {-1:0, 0:1}
k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) :
Am += A[k]; A[k] = Am; k += e
if e < 0 :
R.append(A[0])
return R
A000657_list(30) # Peter Luschny, Apr 02 2012
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A122193
Triangle T(n,k) of number of loopless multigraphs with n labeled edges and k labeled vertices and without isolated vertices, n >= 1; 2 <= k <= 2*n.
Original entry on oeis.org
1, 1, 6, 6, 1, 24, 114, 180, 90, 1, 78, 978, 4320, 8460, 7560, 2520, 1, 240, 6810, 63540, 271170, 604800, 730800, 453600, 113400, 1, 726, 43746, 774000, 6075900, 25424280, 61923960, 90720000, 78813000, 37422000, 7484400
Offset: 1
Triangle begins:
1;
1, 6, 6;
1, 24, 114, 180, 90;
1, 78, 978, 4320, 8460, 7560, 2520;
...
From _Francisco Santos_, Nov 17 2017: (Start)
For n=3 edges and k=4 vertices there are three loopless multigraphs without isolated vertices: a path, a Y-graph, and the multigraph {12, 34, 34}. The number of labelings in each is 3!4!/a, where a is the number of automorphisms. This gives respectively 3!4!/2 = 72, 3!4!/6 = 24 and 3!4!/8 = 18, adding up to 72 + 24 + 18 = 114. (End)
From _Peter Bala_, Jan 28 2018: (Start)
T(2,3) = 6: Consider 2 (nondegenerate) finite closed intervals [a, b] and [c, d]. There are 6 arrangements of these two intervals with 3 distinct endpoints:
...a--b--d.... a < b = c < d
...a...c--b... a < c < b = d
...a--d...b... a = c < d < b
...a--b...d... a = c < b < d
...c...a--d... c < a < b = d
...c--a--b.... c < a = d < b
T(2,4) = 6: There are 6 arrangements of the two intervals with 4 distinct endpoints:
...a--b...c--d..... no intersection a < b < c < d
...a...c...b...d... a < c < b < d
...a...c--d...b.... [c,d] is a proper subset of [a,b]
...c...a...d...b... c < a < d < b
...c...a--b...d... [a,b] is a proper subset of [c,d]
...c--d...a--b..... no intersection c < d < a < b.
Sums of powers of triangular numbers:
Row 2: Sum_{i = 2..n-1} C(i,2)^2 = C(n,3) + 6*C(n,4) + 6*C(n,5);
Row 3: Sum_{i = 2..n-1} C(i,2)^3 = C(n,3) + 24*C(n,4) + 114*C(n,5) + 180*C(n,6) + 90*C(n,7). See A024166 and A085438.
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 19*x^2 + 1147*x^3 + 145606*x^4 + 31784062*x^5 + ... )^4
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 37*x^2 + 4453*x^3 + 1126375*x^4 + 489185863*x^5 + ... )^9
exp( Sum_{n >= 1} R(n,4)*x^n/n ) = (1 + x + 61*x^2 + 12221*x^3 + 5144411*x^4 + 3715840571*x^5 + ... )^16 (End)
From _Peter Bala_, Feb 04 2018: (Start)
T(3,3) = 24 alignments of length 3 of 3 strings each of length 2. Examples include
(i) A B - (ii) A - B
- C D - C D
- E F E F -
There are 18 alignments of type (i) with two gap characters in one of the columns (3 ways of putting 2 gap characters in a column x 2 ways to place the other letter in the row which doesn't yet have a gap character x 3 columns: there are 6 alignments of type (ii) with a single gap character in each column (3 ways to put a single gap character in the first column x 2 ways to then place a single gap character in the second column). (End)
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (rows 1 <= n <= 100).
- Peter Bala, Deformations of the Hadamard product of power series
- Peter Bala, Notes on A122193
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- J. Engbers and C. Stocker, Two Combinatorial Proofs of Identities Involving Sums of Powers of Binomial Coefficients, Integers 16 (2016), #A58.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- IBM Ponder This, Jan 01 2001
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
-
# Note that the function implements the full triangle because it can be
# much better reused and referenced in this form.
A122193 := (n,k) -> A078739(n,k)*k!/2^n:
# Displays the truncated triangle from the definition:
seq(print(seq(A122193(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
-
t[n_, k_] := Sum[(-1)^(n - r) Binomial[n, r] StirlingS2[n + r, k], {r, 0, n}]; Table[t[n, k] k!/2^n, {n, 6}, {k, 2, 2 n}] // Flatten (* Michael De Vlieger, Nov 18 2017, after Jean-François Alcover at A078739 *)
A210108
Left half of Poupard's triangle, A008301.
Original entry on oeis.org
1, 1, 2, 4, 8, 10, 34, 68, 94, 104, 496, 992, 1420, 1712, 1816, 11056, 22112, 32176, 40256, 45496, 47312, 349504, 699008, 1026400, 1309568, 1528384, 1666688, 1714000, 14873104, 29746208, 43920304, 56696384, 67419664, 75523808, 80571184, 82285184, 819786496
Offset: 0
A275801
Number of alternating permutations of the multiset {1,1,2,2,...,n,n}.
Original entry on oeis.org
1, 0, 1, 4, 53, 936, 25325, 933980, 45504649, 2824517520, 217690037497, 20394614883316, 2282650939846781, 300814135522967736, 46103574973075123877, 8130996533576437261772, 1635028654501420083152785, 371853339350614571322913824, 94969025880924845123887493233
Offset: 0
- Max Alekseyev, Table of n, a(n) for n = 0..70
- Wikipedia, Alternating permutation.
- hkju et al., Number of updown sequences of 1,1,2,2,...,n,n, Mathoverflow, 2016.
Cf.
A000111,
A001250,
A000459,
A004075,
A005799,
A114938,
A137729,
A137730,
A137737,
A137749,
A275829.
A130847
Triangle T(n,k), 0<=k<=n, read by rows, given by [1,2,3,4,5,6,7,8,9,10,...] DELTA [1,1,6,6,15,15,28,28,...] where DELTA is the operator defined in A084938 .
Original entry on oeis.org
1, 1, 1, 3, 5, 2, 15, 42, 37, 10, 105, 450, 699, 458, 104, 945, 5775, 13845, 16065, 8866, 1816, 10395, 85995, 293265, 522345, 506028, 248660, 47312
Offset: 0
Triangle begins:
1;
1, 1;
3, 5, 2;
15, 42, 37, 10;
105, 450, 699, 458, 104;
945, 5775, 13845, 16065, 8866, 1816;
10395, 85995, 293265, 522345, 506028, 248660, 47312 ;...
A275829
Number of weakly alternating permutations of the multiset {1,1,2,2,...,n,n}.
Original entry on oeis.org
1, 1, 2, 12, 140, 2564, 68728, 2539632, 123686800, 7677924688, 591741636128, 55438330474944, 6204888219697856, 817697605612952384, 125322509904814743424, 22102340129003429880576, 4444468680409243484516608, 1010802175212828388101900544, 258152577318424951261637001728
Offset: 0
Cf.
A000111,
A001250,
A000459,
A004075,
A005799,
A114938,
A137729,
A137730,
A137737,
A137749,
A275801.
A272481
E.g.f. A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2) represented as a triangle, read by rows, where row n lists of coefficients T(n,k) of x^(2*n)*y^k/n! in A(x,y), for k=0..2*n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 3, 1, 0, 0, 3, 15, 25, 15, 3, 0, 0, 17, 119, 329, 455, 329, 119, 17, 0, 0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0, 0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0, 0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0, 0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0
Offset: 0
E.g.f.: A(x,y) = 1 + x^2*(y)/2! + x^4*(y + 3*y^2 + y^3)/4! +
x^6*(3*y + 15*y^2 + 25*y^3 + 15*y^4 + 3*y^5)/6! +
x^8*(17*y + 119*y^2 + 329*y^3 + 455*y^4 + 329*y^5 + 119*y^6 + 17*y^7)/8! +
x^10*(155*y + 1395*y^2 + 5325*y^3 + 11235*y^4 + 14301*y^5 + 11235*y^6 + 5325*y^7 + 1395*y^8 + 155*y^9)/10! +
x^12*(2073*y + 22803*y^2 + 110605*y^3 + 311355*y^4 + 563013*y^5 + 683067*y^6 + 563013*y^7 + 311355*y^8 + 110605*y^9 + 22803*y^10 + 2073*y^11)/12! +...
where A(x,y) = cos((x - x*y)/2) / cos((x + x*y)/2).
This triangle of coefficients of x^(2*n)*y^k/(2*n)!, k=0..2*n, begins:
[1];
[0, 1, 0];
[0, 1, 3, 1, 0];
[0, 3, 15, 25, 15, 3, 0];
[0, 17, 119, 329, 455, 329, 119, 17, 0];
[0, 155, 1395, 5325, 11235, 14301, 11235, 5325, 1395, 155, 0];
[0, 2073, 22803, 110605, 311355, 563013, 683067, 563013, 311355, 110605, 22803, 2073, 0];
[0, 38227, 496951, 2918825, 10241231, 23904881, 39102063, 45956625, 39102063, 23904881, 10241231, 2918825, 496951, 38227, 0];
[0, 929569, 13943535, 96075665, 403075855, 1150348017, 2362479119, 3600524785, 4136759055, 3600524785, 2362479119, 1150348017, 403075855, 96075665, 13943535, 929569, 0]; ...
-
{T(n,k) = my(X=x+x*O(x^(2*n))); (2*n)!*polcoeff(polcoeff( cos((X-x*y)/2)/cos((X+x*y)/2), 2*n,x), k,y)}
for(n=0,10, for(k=0,2*n, print1(T(n,k),", "));print(""))
A135594
a(n) = (1/2^n) * Sum_{i=0..n} (-1)^(n-i) * binomial(n,i) * A000364(i).
Original entry on oeis.org
1, 0, 1, 6, 73, 1380, 37801, 1417626, 69802993, 4369750440, 339034806001, 31935510092046, 3590398569115513, 474937566660074700, 73024143791301120601, 12914495107705743175266, 2603190607000627341985633, 593297406341867021292734160
Offset: 0
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 4.2.2.(b).
-
A000364 := proc(n) option remember ; (2*n)!*coeftayl(sec(x),x=0,2*n) ; end: A135594 := proc(n) add((-1)^(n-i)*binomial(n,i)*A000364(i),i=0..n)/2^n ; end: seq(A135594(n),n=0..20) ; # R. J. Mathar, Mar 14 2008
f:=sec(z): fser:=series(f,z=0,63): for n from 0 to 60 do b[n]:=factorial(n)*coeff(fser,z,n) end do: a:= proc(n) options operator, arrow: add((-1)^(n-k)*binomial(n,k)*b[2*k],k=0..n)/2^n end proc: seq(a(n),n=0..16); # Emeric Deutsch, Mar 17 2008
-
Table[(-1)^n*Sum[Binomial[n, k]*EulerE[2*k], {k, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Jun 08 2019 *)
Showing 1-10 of 11 results.
Comments