cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A131689 Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,...] DELTA [1,1,2,2,3,3,4,4,5,5,6,6,...] where DELTA is the operator defined in A084938; another version of A019538.
See also A019538: version with n > 0 and k > 0. - Philippe Deléham, Nov 03 2008
From Peter Bala, Jul 21 2014: (Start)
T(n,k) gives the number of (k-1)-dimensional faces in the interior of the first barycentric subdivision of the standard (n-1)-dimensional simplex. For example, the barycentric subdivision of the 1-simplex is o--o--o, with 1 interior vertex and 2 interior edges, giving T(2,1) = 1 and T(2,2) = 2.
This triangle is used when calculating the face vectors of the barycentric subdivision of a simplicial complex. Let S be an n-dimensional simplicial complex and write f_k for the number of k-dimensional faces of S, with the usual convention that f_(-1) = 1, so that F := (f_(-1), f_0, f_1,...,f_n) is the f-vector of S. If M(n) denotes the square matrix formed from the first n+1 rows and n+1 columns of the present triangle, then the vector F*M(n) is the f-vector of the first barycentric subdivision of the simplicial complex S (Brenti and Welker, Lemma 2.1). For example, the rows of Pascal's triangle A007318 (but with row and column indexing starting at -1) are the f-vectors for the standard n-simplexes. It follows that A007318*A131689, which equals A028246, is the array of f-vectors of the first barycentric subdivision of standard n-simplexes. (End)
This triangle T(n, k) appears in the o.g.f. G(n, x) = Sum_{m>=0} S(n, m)*x^m with S(n, m) = Sum_{j=0..m} j^n for n >= 1 as G(n, x) = Sum_{k=1..n} (x^k/(1 - x)^(k+2))*T(n, k). See also the Eulerian triangle A008292 with a Mar 31 2017 comment for a rewritten form. For the e.g.f. see A028246 with a Mar 13 2017 comment. - Wolfdieter Lang, Mar 31 2017
T(n,k) = the number of alignments of length k of n strings each of length 1. See Slowinski. An example is given below. Cf. A122193 (alignments of strings of length 2) and A299041 (alignments of strings of length 3). - Peter Bala, Feb 04 2018
The row polynomials R(n,x) are the Fubini polynomials. - Emanuele Munarini, Dec 05 2020
From Gus Wiseman, Feb 18 2022: (Start)
Also the number of patterns of length n with k distinct parts (or with maximum part k), where we define a pattern to be a finite sequence covering an initial interval of positive integers. For example, row n = 3 counts the following patterns:
(1,1,1) (1,2,2) (1,2,3)
(2,1,2) (1,3,2)
(2,2,1) (2,1,3)
(1,1,2) (2,3,1)
(1,2,1) (3,1,2)
(2,1,1) (3,2,1)
(End)
Regard A048994 as a lower-triangular matrix and divide each term A048994(n,k) by n!, then this is the matrix inverse. Because Sum_{k=0..n} (A048994(n,k) * x^n / n!) = A007318(x,n), Sum_{k=0..n} (A131689(n,k) * A007318(x,k)) = x^n. - Natalia L. Skirrow, Mar 23 2023
T(n,k) is the number of ordered partitions of [n] into k blocks. - Alois P. Heinz, Feb 21 2025

Examples

			The triangle T(n,k) begins:
  n\k 0 1    2     3      4       5        6        7        8        9      10 ...
  0:  1
  1:  0 1
  2:  0 1    2
  3:  0 1    6     6
  4:  0 1   14    36     24
  5:  0 1   30   150    240     120
  6:  0 1   62   540   1560    1800      720
  7:  0 1  126  1806   8400   16800    15120     5040
  8:  0 1  254  5796  40824  126000   191520   141120    40320
  9:  0 1  510 18150 186480  834120  1905120  2328480  1451520   362880
  10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
  ... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
  (i) A -    (ii) A -    (iii) A -
      B -         B -          - B
      C -         - C          - C
      - D         - D          - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
		

Crossrefs

Case m=1 of the polynomials defined in A278073.
Cf. A000142 (diagonal), A000670 (row sums), A000012 (alternating row sums), A210029 (central terms).
Cf. A008292, A028246 (o.g.f. and e.g.f. of sums of powers).
A version for partitions is A116608, or by maximum A008284.
A version for compositions is A235998, or by maximum A048004.
Classes of patterns:
- A000142 = strict
- A005649 = anti-run, complement A069321
- A019536 = necklace
- A032011 = distinct multiplicities
- A060223 = Lyndon
- A226316 = (1,2,3)-avoiding, weakly A052709, complement A335515
- A296975 = aperiodic
- A345194 = alternating, up/down A350354, complement A350252
- A349058 = weakly alternating
- A351200 = distinct runs
- A351292 = distinct run-lengths

Programs

  • Julia
    function T(n, k)
        if k < 0 || k > n return 0 end
        if n == 0 && k == 0 return 1 end
        k*(T(n-1, k-1) + T(n-1, k))
    end
    for n in 0:7
        println([T(n, k) for k in 0:n])
    end
    # Peter Luschny, Mar 26 2020
    
  • Maple
    A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
    # Alternatively:
    A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
  • Mathematica
    t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
    T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
  • PARI
    {T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
    /* Michael Somos, Jul 08 2018 */
    
  • SageMath
    @cached_function
    def F(n): # Fubini polynomial
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021

Formula

T(n,k) = k*(T(n-1,k-1) + T(n-1,k)) with T(0,0)=1. Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A000629(n), A033999(n), A000007(n), A000670(n), A004123(n+1), A032033(n), A094417(n), A094418(n), A094419(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively. [corrected by Philippe Deléham, Feb 11 2013]
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A000670(n), A122704(n) for x=-1, 0, 1, 2 respectively. - Philippe Deléham, Oct 09 2007
Sum_{k=0..n} (-1)^k*T(n,k)/(k+1) = Bernoulli numbers A027641(n)/A027642(n). - Peter Luschny, Sep 17 2011
G.f.: F(x,t) = 1 + x*t + (x+x^2)*t^2/2! + (x+6*x^2+6*x^3)*t^3/3! + ... = Sum_{n>=0} R(n,x)*t^n/n!.
The row polynomials R(n,x) satisfy the recursion R(n+1,x) = (x+x^2)*R'(n,x) + x*R(n,x) where ' indicates differentiation with respect to x. - Philippe Deléham, Feb 11 2013
T(n,k) = [t^k] (n! [x^n] (1/(1-t*(exp(x)-1)))). - Peter Luschny, Jan 23 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the black diamond multiplication operator of Dukes and White. See also Bala, Example E8. - Peter Bala, Jan 08 2018

A087127 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of triangular numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 2*p-1, where a(i,p) satisfies Sum_{i=1..n} C(i+1,2)^p = 3 * C(n+2,3) * Sum_{i=1..2*p-1} a(i,p) * C(n-1,i-1)/(i+2).

Original entry on oeis.org

1, 1, 2, 1, 1, 8, 19, 18, 6, 1, 26, 163, 432, 564, 360, 90, 1, 80, 1135, 6354, 18078, 28800, 26100, 12600, 2520, 1, 242, 7291, 77400, 405060, 1210680, 2211570, 2520000, 1751400, 680400, 113400, 1, 728, 45199, 862218, 7667646, 38350080, 118848420
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 08 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+2,2)^p of degree 2*p in terms of falling factorials: C(x+2,2)^p = Sum_{k = 0..2*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+2,2)^p = Sum_{k = 0..2*p} T(p,k)*C(n,k+1).
The sum of the p-th powers of the triangular numbers is also given by Sum_{i = 0..n-1} C(i+2,2)^p = Sum_{k = 2..2*p} A122193(p,k)*C(n+2,k+1) for p >= 1. (End)

Examples

			Row 3 contains 1,8,19,18,6, so Sum_{i=1..n} C(i+1,2)^3 = (n+2) * C(n+1,2) * [ a(1,3)/3 + a(2,3)*C(n-1,1)/4 + a(3,3)*C(n-1,2)/5 + a(4,3)*C(n-1,3)/6 + a(5,3)*C(n-1,4)/7 ] = [ (n+2)*(n+1)*n/2 ] * [ 1/3 + (8/4)*C(n-1,1) + (19/5)*C(n-1,2) + (18/6)*C(n-1,3) + (6/7)*C(n-1,4). Cf. A085438 for more details.
From _Peter Bala_, Mar 08 2018: (Start)
Table begins
n=0 |1
n=1 |1   2     1
n=2 |1   8    19    18      6
n=3 |1  26   163   432    564    360     90
n=4 |1  80  1135  6354  18078  28800  26100  12600  2520
...
Row 2: C(i+2,2)^2 = C(i,0) + 8*C(i,1) + 19*C(i,2) + 18*C(i,3) + 6*C(i,4). Hence, Sum_{i = 0..n-1} C(i+2,2)^2 =  C(n,1) + 8*C(n,2) + 19*C(n,3) + 18*C(n,4) + 6*C(n,5). (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..6],n->List([0..2*n],k->Sum([0..k],i->(-1)^(k-i)*Binomial(k,i)*Binomial(i+2,2)^n)))); # Muniru A Asiru, Mar 22 2018
  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k,i)*binomial(i+2,2)^n, i = 0..k), k = 0..2*n), n = 0..8); # Peter Bala, Mar 08 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 3, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 2, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 2*p - 1}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
    a[i_,p_]:=(-1)^i HypergeometricPFQ[ConstantArray[3,p]~Join~{2-i},ConstantArray[1,p],1];Table[a[i,p],{p,0,10},{i,2,2 p+2}]//Flatten (* Jonathan Burns, Mar 20 2018 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 3, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 2, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 2*p-1, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017
    

Formula

a(1, p) = 1, a(2, p) = 3^(p-1)-1, a(3, p) = 3^(p-1)*[2^(p-1)-2]+1, ..., a(2*p-3, p) = [ (6*p^4-20*p^3+21*p^2-7*p)*(2*p-4)! ]/[3*2^(p-1)], a(2*p-2, p) = [ (p^2-p)*(2*p-3)! ]/2^(p-2), a(2*p-1, p) = [ (p-1)*(2*p-3)! ]/2^(p-2).
a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+3, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+2, i-2*k)^(p-1) ]
From Peter Bala, Mar 08 2018: (Start)
The following remarks assume row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*C(k,i)*C(i+2,2)^n. Equivalently, let v_n denote the sequence (1, 3^n, 6^n, 10^n, ...) regarded as an infinite column vector, where 1, 3, 6, 10, ... is the sequence of triangular numbers A000217. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318. Cf. A122193.
T(n+1,k) = C(k+2,2)*T(n,k) + 2*C(k+1,2)*T(n,k-1) + C(k,2)*T(n,k-2), with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 2*n.
Let R(n,x) denote the n-th row polynomial.
R(n+1,x) = 1/2!*(1 + x)^2*(d/dx)^2 (x^2*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+2,2)^n*x^i/(1 + x)^(i+1).
R(n,x) = (1 + x)^2 o (1 + x)^2 o ... o (1 + x)^2 (n factors), where o denotes the black diamond product of power series defined in Dukes and White. Note the polynomial x^2 o ... o x^2 (n factors) is the n-th row polynomial of A122193.
x^2*R(n,x) = (1 + x)^2 * the n-th row polynomial of A122193 (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A078739 Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).

Original entry on oeis.org

1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 21 2002

Keywords

Comments

A generalization of the Stirling2 numbers S_{1,1} from A008277.
The g.f. for column k=2*K is (x^K)*pe(K,x)*d(k,x) and for k=2*K+1 it is (x^K)*po(K,x)*2*(K+1)*K*d(k,x), K>= 1, with d(k,x) := 1/product(1-p*(p-1)*x,p=2..k) and the row polynomials pe(n,x) := sum(A089275(n,m)*x^m,m=0..n-1) and po(n,x) := sum(A089276(n,m)*x^m,m=0..n-1). - Wolfdieter Lang, Nov 07 2003
The formula for the k-th column sequence is given in A089511.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_2 (the disjoint union of n copies of the complete graph K_2). An example is given below. - Peter Bala, Aug 15 2013

Examples

			From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2    3    4    5    6   7   8
= = = = = = = = = = = = = = = = = =
  1 | 1
  2 | 2    4    1
  3 | 4   32   38   12    1
  4 | 8  208  652  576  188  24   1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o  o---o
a   b  c   d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
		

Crossrefs

Row sums give A020556. Triangle S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{3, 2} = A078740, S_{3, 3} = A078741. A090214 (S_{4,4}).
The column sequences are A000079(n-1)(powers of 2), 4*A016129(n-2), A089271, 12*A089272, A089273, etc.
Main diagonal is A217900.
Cf. A071951 (Legendre-Stirling triangle).

Programs

  • Maple
    # Note that the function implements the full triangle because it can be
    # much better reused and referenced in this form.
    A078739 := proc(n,k) local r;
    add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
    # Displays the truncated triangle from the definition:
    seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
  • Mathematica
    t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)

Formula

a(n, k) = sum(binomial(k-2+p, p)*A008279(2, p)*a(n-1, k-2+p), p=0..2) if 2 <= k <= 2*n for n>=1, a(1, 2)=1; else 0. Here A008279(2, p) gives the third row (k=2) of the augmented falling factorial triangle: [1, 2, 2] for p=0, 1, 2. From eq.(21) with r=2 of the Blasiak et al. paper.
a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*A008279(p, 2)^n, p=2..k) for 2 <= k <= 2*n, n>=1. From eq.(19) with r=2 of the Blasiak et al. paper.
a(n, k) = sum(A071951(n, j)*A089503(j, 2*j-k+1), j=ceiling(k/2)..min(n, k-1)), 1<=n, 2<=k<=2n; relation to Legendre-Stirling triangle. Wolfdieter Lang, Dec 01 2003
a(n, k) = A122193(n,k)*2^n/k! - Peter Luschny, Mar 25 2011
E^n = sum_{k=2}^(2n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^2d^2/dx^2.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*sum {k = 0..inf} (k*(k-1))^n*x^k/k!. - Peter Bala, Aug 15 2013

Extensions

More terms from Wolfdieter Lang, Nov 07 2003

A055203 Number of different relations between n intervals on a line.

Original entry on oeis.org

1, 1, 13, 409, 23917, 2244361, 308682013, 58514835289, 14623910308237, 4659168491711401, 1843200116875263613, 886470355671907534969, 509366445167037318008557, 344630301458257894126724041, 271188703889907190388528763613, 245570692377888837925941696215449
Offset: 0

Views

Author

Sylviane R. Schwer (schwer(AT)lipn.univ-paris13.fr), Jun 22 2000

Keywords

Comments

From Peter Bala, Jan 30 2018: (Start)
Number of alignments of n strings of length 2 (see Slowinski).
Conjectures: a(n) == 1 (mod 12); for fixed k, the sequence a(n) (mod k) eventually becomes periodic with exact period a divisor of phi(k), where phi(k) is Euler's totient function A000010. (End)

Examples

			In case n = 2 this is the Delannoy number a(2) = D(2,2) = 13.
a(2) = 13 because if you have two intervals [a1,a2] and [b1,b2], using a for a1 or a2 and b for b1 or b2 and writing c if an a is at the same place as a b, we get the following possibilities: aabb, acb, abab, cab, abc, baab, abba, cc, bac, cba, baba, bca, bbaa.
		

References

  • S. R. Schwer, Dépendances temporelles: les mots pour le dire, Journées Intelligence Artificielle, 1998.
  • S. R. Schwer, Enumerating and generating Allen's algebra, in preparation.

Crossrefs

Programs

  • Maple
    lambda := proc(p,n) option remember; if n = 1 then if p = 2 then RETURN(1) else RETURN(0) fi; else RETURN((p*(p-1)/2)*(lambda(p,n-1)+2*lambda(p-1,n-1)+lambda(p-2,n-1))) fi; end; A055203 := n->add(lambda(i,n),i=2..2*n);
    A055203 := proc(n) local k; add(A078739(n,k)*k!,k=0..2*n)/2^n end:
    seq(A055203(n),n=0..15); # Peter Luschny, Mar 25 2011
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> ceil(add(b(n+k)*binomial(n, k), k=0..n)/2^(n+1)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2018
  • Mathematica
    a[n_] := Sum[((m-1)*m)^n / 2^(m+n+1), {m, 0, Infinity}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 10 2011, after Vladeta Jovovic *)
    With[{r = 2}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 15}]}]] (* Vaclav Kotesovec, Mar 22 2016 *)

Formula

a(n) = Sum_{i=2..2n} lambda(i, n), with lambda(p, 1) = 1 if p = 2, otherwise 0; lambda(p, n) = (p*(p-1)/2)*(lambda(p, n-1) + 2*lambda(p-1, n-1) + lambda(p-2, n-1)).
lambda(p, n) = Sum_k[( - 1)^(p + k) * C(p, k) * ((k - 1)*k/2)^n]. So if T(m, 0), T(m, 1), ..., T(m, m) is any row of A035317 with m >= 2n - 1 then a(n) = Sum_j[(-1)^j * T(m, j) * ((m - j + 1)*(m - j)/2)^n]; e.g., a(2) = 13 = 1*6^2 - 3*3^2 + 4*1^2 - 2*0^2 = 1*10^2 - 4*6^2 + 7*3^2 - 6*1^2 + 3*0^2 = 1*15^2 - 5*10^2 + 11*6^2 - 13*3^2 + 9*1^2 - 3*0^2 etc. while a(3) = 409 = 1*15^3 - 5*10^3 + 11*6^3 - 13*3^3 + 9*1^3 - 3*0^3 etc. - Henry Bottomley, Jan 03 2001
Row sums of A122193. - Vladeta Jovovic, Aug 24 2006
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*A121251(k). - Vladeta Jovovic, Aug 25 2006
E.g.f.: Sum_{m>=0} exp(x*binomial(m,2))/2^(m+1). - Vladeta Jovovic, Sep 24 2006
a(n) = Sum_{m>=0} binomial(m,2)^n/2^(m+1). - Vladeta Jovovic, Aug 17 2006
a(n) = (1/2^n)*Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A000670(n+k). - Vladeta Jovovic, Aug 17 2006
a(n) ~ n! * n^n * 2^(n-1) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
From Peter Bala, Jan 30 2018: (Start)
a(n) = Sum_{k = 2..2*n} Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*(i*(i-1)/2)^n.
a(n) = (1/2^(n+1))*Sum_{k = 0..n} binomial(n,k)*A000670(n+k) for n >= 1. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 04 2000
More terms from N. J. A. Sloane, Jan 03 2001

A299041 Irregular table: T(n,k) equals the number of alignments of length k of n strings each of length 3.

Original entry on oeis.org

1, 1, 12, 30, 20, 1, 60, 690, 2940, 5670, 5040, 1680, 1, 252, 8730, 103820, 581700, 1767360, 3087000, 3099600, 1663200, 369600, 1, 1020, 94890, 2615340, 32186070, 214628400, 859992000, 2189325600, 3628409400, 3903900000, 2630628000, 1009008000, 168168000, 1, 4092, 979530, 58061420, 1411122300
Offset: 1

Views

Author

Peter Bala, Feb 02 2018

Keywords

Comments

An alignment of n strings of various lengths is a way of inserting blank characters into the n strings so that the resulting strings all have the same length. We don't allow insertion of a blank character into the same position in each of the n strings.
In this case, let s_1,...,s_n be n strings each of length 3 over an alphabet A. Let - be a gap symbol not in A and let A' = union of A and {-}. An alignment of the n strings is an n-tuple (s_1',...,s_n') of strings each of length >= 3 over the alphabet A' such that
(a) the strings s_i', 1 <= i <= n, have the same length. This common length is called the length of the alignment.
(b) deleting the gap symbols from s_i' yields the string s_i for 1 <= i <= n
(c) there is no value j such that all the strings s_i', 1 <= i <= n have a gap symbol at position j.
By writing the strings s_i' one under another we can consider an alignment of n strings as an n X L matrix, where L, the length of the alignment, ranges from a minimum value of 3 to a maximum value of 3*n. Each row of the matrix has 3 characters from the alphabet A and (L - 3) gap characters.
For example,
s_1' = ABC------
s_2' = ---DEF---
s_3' = ------GHI
is an alignment (of maximum length L = 9) of three strings s_1 = ABC, s_2 = DEF and s_3 = GHI each of length 3.
For the number of alignments of length k of n strings of length 1 (resp. 2) see A131689 (resp. A122193).

Examples

			Table begins
n\k| 3   4     5       6      7      8        9      10
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
  1| 1
  2| 1  12    30      20
  3| 1  60   690    2940   5670    5040    1680
  4| 1 252  8730  103820 581700 1767360 3087000 3099600 ...
...
T(2,5) = 30: An alignment of length 5 will have two gap symbols on each line. There are C(5,2) = 10 ways of choosing the 2 positions to insert the gap symbols in the first string. The second string in the alignment must then have nongap symbols at these two positions leaving three positions in which to insert the remaining 1 nongap symbol, giving in total 10 x 3 = 30 possible alignments of 2 strings of 3 characters. Some examples are
  ABC--   ABC--   ABC--
  D--EF   -D-EF   --DEF
Row 2: Sum_{i = 3..n-1} C(i,3)^2 = C(n,4) + 12*C(n,5) + 30*C(n,6) + 20*C(n,7).
Row 3: Sum_{i = 3..n-1} C(i,3)^3 = C(n,4) + 60*C(n,5) + 690*C(n,6) + 2940*C(n,7) + 5670*C(n,8)+ 5040*C(n,9)+ 1680*C(n,10).
exp( Sum_{n >= 1} R(n,2)*x^n/n ) = (1 + x + 153*x^2 + 128793*x^3 + 319155321*x^4 + 1744213657689*x^5 + ....)^8
exp( Sum_{n >= 1} R(n,3)*x^n/n ) = (1 + x + 424*x^2 + 998584*x^3 + 6925040260*x^4 + 105920615923684*x^5 + ....)^27.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i) *binomial(k,i)*binomial(i,3)^n, i = 0..k ), k = 3..3*n), n = 1..6);
  • Mathematica
    nmax = 6; T[n_, k_] := Sum[(-1)^(k-i) Binomial[k, i] Binomial[i, 3]^n, {i, 0, k}]; Table[T[n, k], {n, 1, nmax}, {k, 3, 3n}] // Flatten (* Jean-François Alcover, Feb 20 2018 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i)*binomial(i,3)^n.
T(n,3) = 1; T(n,3*n) = (3*n)!/6^n = A014606(n)
T(n,k) = binomial(k,3)*( T(n-1,k) + 3*T(n-1,k-1) + 3*T(n-1,k-2) + T(n-1,k-3) ) for 3 <= k <= 3*n with boundary conditions T(n,3) = 1 for n >= 1 and T(n,k) = 0 if (k < 3) or (k > 3*n).
Double e.g.f.: exp(-x)*Sum_{n >= 0} exp(binomial(n,3)*y)*x^n/n! = 1 + (x^3/3!)*y + (x^3/3! + 12*x^4/4! + 30*x^5/5! + 20*x^6/6!)*y^2/2! + ....
n-th row polynomial R(n,x) = Sum_{i >= 3} binomial(i,3)^n*x^i/(1 + x)^(i+1) for n >= 1.
1/(1 - x)*R(n,x/(1 - x)) = Sum_{i >= 3} binomial(i,3)^n*x^i for n >= 1.
R(n,x) = x^3 o x^3 o ... o x^3 (n factors), where o is the black diamond product of power series defined in Dukes and White.
R(n,x) = coefficient of (z_1)^3*...*(z_n)^3 in the expansion of the rational function 1/(1 + x - x*(1 + z_1)*...*(1 + z_n)).
The polynomials Sum_{k = 3..3*n} T(n,k)*x^(k-3)*(1 - x)^(3*n-k) are the row polynomials of A174266.
Sum_{i = 3..n-1} binomial(i,3)^m = Sum_{k = 3..3*m} T(m,k)*binomial(n,k+1) for m >= 1. See Examples below.
x^3*R(n,-1 - x) = (-1)^n*(1 + x)^3*R(n,x).
R(n+1,x) = 1/3!*x^3*(d/dx)^3 ((1 + x)^3*R(n,x)) for n >= 1.
The zeros of R(n,x) belong to the interval [-1, 0].
Row sums R(n,1) = A062208(n); alternating row sums R(n,-1) = (-1)^n.
For k a nonzero integer, the power series A(k,x) := exp( Sum_{n >= 1} 1/k^3*R(n,k)*x^n/n ) appear to have integer coefficients. See the Example section.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k) = ( binomial(x,3) )^n. Equivalently, Sum_{k = 3..3*n} (-1)^(n+k)*T(n,k)*binomial(x+k,k) = ( binomial(x+3,3) )^n. Cf. the Worpitzky-type identity Sum_{k = 1..n} A019538(n,k)* binomial(x,k) = x^n.
Sum_{k = 3..3*n} T(n,k)*binomial(x,k-3) = -binomial(x,3)^n + 3*binomial(x+1,3)^n - 3*binomial(x+2,3)^n + binomial(x+3,3)^n. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane.

A262704 Triangle: Newton expansion of C(n,m)^3, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 27 2015

Keywords

Comments

Triangle here T_3(n,m) is such that C(n,m)^3 = Sum_{j=0..n} C(n,j)*T_3(j,m).
Equivalently, lower triangular matrix T_3 such that
|| C(n,m)^3 || = A181583 = P * T_3 = A007318 * T_3.
T_3(n,m) = 0 for n < m and for 3*m < n. In fact:
C(x,m)^q and C(x,m), with m nonnegative and q positive integer, are polynomial in x of degree m*q and m respectively, and C(x,m) is a divisor of C(x,m)^q.
Therefore the Newton series will give C(x,m)^q = T_q(m,m)*C(x,m) + T_q(m+1,m)*C(x,m+1) + ... + T_q(q*m,m)*C(x,q*m), where T_q(n,m) is the n-th forward finite difference of C(x,m)^q at x = 0.
Example:
C(x,2)^3 = x^3*(x-1)^3 / 8 = 1*C(x,2) + 24*C(x,3) + 114*C(x,4) + 180*C(x,5) + 90*C(x,6);
C(5,2)^3 = C(5,3)^3 = 1000 = 1*C(5,2) + 24*C(5,3) + 114*C(5,4) + 180*C(5,5) = 1*C(5,3) + 60*C(5,4) + 690*C(5,5).
So we get the expansion of the 3rd power of the binomial coefficient in terms of the binomial coefficients on the same row.
T_1 is the unitary matrix,
T_2 is the transpose of A109983,
T_3 is this sequence,
T_4, T_5 are A262705, A262706.

Examples

			Triangle starts:
n\m  [0]     [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[0]  1;
[1]  0,      1;
[2]  0,      6,      1;
[3]  0,      6,      24,     1;
[4]  0,      0,      114,    60,     1;
[5]  0,      0,      180,    690,    120,    1;
[6]  0,      0,      90,     2940,   2640,   210,    1;
[7]  0,      0,      0,      5670,   21840,  7770,   336,    1;
[8]  0,      0,      0,      5040,   87570,  107520, 19236,  504,    1;
[9]  ...
		

Crossrefs

Row sums are A172634, the inverse binomial transform of the Franel numbers (A000172).
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Cf. A109983 (transpose of), A262705, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]):
    _T_3:=h->_P(h)^-1*_P_3(h):
    
  • PARI
    T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
    
  • PARI
    t3(n,m) = sum(j=0, n,  (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3);
    concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ Gheorghe Coserea, Jul 14 2016

Formula

T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).

A300729 Number of arrangements on a line of n finite closed intervals (possibly of zero length) with k distinct endpoints (n >= 1, 1 <= k <= 2*n).

Original entry on oeis.org

1, 1, 1, 7, 12, 6, 1, 25, 138, 294, 270, 90, 1, 79, 1056, 5298, 12780, 16020, 10080, 2520, 1, 241, 7050, 70350, 334710, 875970, 1335600, 1184400, 567000, 113400, 1, 727, 44472, 817746, 6849900, 31500180, 87348240, 152643960, 169533000, 116235000, 44906400, 7484400
Offset: 1

Views

Author

Peter Bala, Mar 12 2018

Keywords

Comments

A122193(n,k) equals the number of arrangements on a line of n (nondegenerate) finite closed intervals having k distinct endpoints. The entries T(n,k) of the present table satisfy T(n,k) = A122193(n,k) + A122193(n,k+1). Proof. In an arrangement contributing to T(n,k) either the intervals are all nondegenerate, and there are A122193(n,k) arrangements of this type, or at least one of the intervals in the arrangement is degenerate. The following argument to show there are A122193(n,k+1) arrangements of the latter type is taken from the solution to the problem posed in the 'IBM Ponder This' link.
In an arrangement of n nondegenerate finite closed intervals having k+1 distinct endpoints, the rightmost point is the right endpoint of one or more intervals. If we move each of these right endpoints to coincide with their corresponding left endpoint then we obtain an arrangement of n finite closed intervals with k distinct endpoints, where at least one of the intervals has zero length. The reverse mapping is clear: given an arrangement of n finite closed intervals with k distinct endpoints, where at least one of the intervals has zero length, take each interval of zero length and move all the right endpoints of these degenerate intervals to a single new rightmost point. This produces an arrangement of n nondegenerate finite closed intervals having k+1 distinct endpoints. (End proof)
Most of the properties of the present table now follow from the properties of A122193.
Reading the table by antidiagonals produces A059515.

Examples

			Table begins
      |k=0   1   2     3     4      5      6      7     8
---------------------------------------------------------
  n=0 |  1
    1 |  0   1   1
    2 |  0   1   7    12     6
    3 |  0   1  25   138   294    270     90
    4 |  0   1  79  1056  5298  12780  16020  10080  2520
   ...
T(2,3) = 12: The 12 arrangements with 3 endpoints of two (possibly degenerate) intervals [a, A] and [b, B] are
     aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB,
     ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
Here, for example, the notation aA-b-B indicates a = A < b < B, so the interval [a, A] is degenerate and lies to the left of the nondegenerate interval [b, B].
Row 2: (1, 7, 12, 6)
(x*(x + 1)/2)^2 = C(x,1) + 7*C(x,2) + 12*C(x,3) + 6*C(x,4).
Row 3: (1, 25, 138, 294, 270, 90)
(x*(x + 1)/2)^3 = C(x,1) + 25*C(x,2) + 138*C(x,3) + 294*C(x,4) + 270*C(x,5) + 90*C(x,6).
Sums of powers of triangular numbers:
Sum_{i = 1..n-1} (i*(i+1)/2)^2 = C(n,2) + 7*C(n,3) + 12*C(n,4) + 6*C(n,5);
Sum_{i = 1..n-1} (i*(i+1)/2)^3 = C(n,2) + 25*C(n,3) + 138*C(n,4) + 294*C(n,5) + 270*C(n,6) + 90*C(n,7).
		

Crossrefs

Cf. A059516 (row sums), A059515, A087127, A122193, A131689.

Programs

  • Maple
    A300729 := proc (n, k)
    add((-1)^(k-i)*binomial(k, i)*((1/2)*i*(i+1))^n, i = 0..k);
    end proc:
    for n from 0 to 8 do
    seq(A300729(n, k), k = 0..2*n)
    end do;
  • Mathematica
    T[0, 0] = 1; T[n_, k_] := Sum[(-1)^(k-i)*Binomial[k, i]*((1/2)*i*(i+1))^n, {i, 0, k}]; Table[T[n, k], {n, 1, 6}, {k, 1, 2 n}] // Flatten (* Jean-François Alcover, Mar 16 2018 *)

Formula

T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * (i*(i+1)/2)^n for 0 <= k <= 2*n.
T(n,k) = A122193(n,k) + A122193(n,k+1).
T(n,k) = k*(k+1)/2*T(n-1,k) + k^2*T(n-1,k-1) + k*(k-1)/2*T(n-1,k-2) for 1 < k <= 2*n with boundary conditions T(0,0) = 1, T(0,n) = 0 for n >= 1; T(n,1) = 1 for n >= 1 and T(n,k) = 0 if k > 2*n.
Double e.g.f.: exp(-x)*Sum_{n>=0} exp( binomial(n+1,2)*y )* x^n/n! = 1 + (x + x^2/2!)*y + (x + 7*x^2/2! + 12*x^3/3! + 6*x^4/4!)*y^2/2! + ....
The n-th row of the table is given by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318 and v_n is the sequence (0, 1, 3^n, 6^n, 10^n, ...) regarded as an infinite column vector, where 1, 3, 6, 10, ... is the sequence of triangular numbers A000217. Cf. A087127 and A122193.
n-th row polynomial R(n,x) = (x + x^2) o ... o (x + x^2) (n factors) where o denotes the black diamond product of power series as defined by Dukes and White.
R(n,x) = Sum_{i >= 1} (i*(i+1)/2)^n*x^i/(1 + x)^(i+1) for n >= 1.
x*R(n,x) = (1 + x)* the n-th row polynomial of A122193 for n >= 1.
(1 + x)*R(n,x) = x * the n-th row polynomial of A087127 for n >= 1.
Sum_{k = 1..2*n} T(n,k)*binomial(x,k) = (binomial(x+1,2))^n for n >= 1.
Sum_{i = 1..n-1} (i*(i+1)/2)^m = Sum_{k = 1..2*m} T(m,k)*binomial(n,k+1) for m >= 1. See Example section below.
R(n,x) = 1/2^n*Sum_{k = 0..n} binomial(n,k)*F(n+k,x), where F(n,x) = Sum_{k = 0..n} k!*Stirling2(n,k)*x^k is the n-th Fubini polynomial, the n-th row polynomial of A131689.
R(n+1,x) = 1/2*(x + x^2) * (d/dx)^2 ( (x + x^2)*R(n,x) ).
R(n,x) = R(n,-1 - x).
The zeros of R(n,x) belong to the interval [-1, 0].
For n >= 1, the alternating sum of the n-th row equals 0.
E.g.f. as a continued fraction: 1/(1 + (x + x^2)*(1 - exp(t))/(1 + (x + x^2)*(1 -exp(2*t))/(1 + (x + x^2)*(1 - exp(3*t))/(1 + ...)))) = 1 + (x + x^2)*t + (x + 7*x^2 + 12*x^3 + 6*x^4)*t^2/2! + ... (use Prodinger, equation 1.1). - Peter Bala, Jun 13 2019

A262705 Triangle: Newton expansion of C(n,m)^4, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_4(n,m) is such that C(n,m)^4 = Sum_{j=0..n} C(n,j)*T_4(j,m).
Equivalently, lower triangular matrix T_4 such that
|| C(n,m)^4 || = A202750 = P * T_4 = A007318 * T_4.
T_4(n,m) = 0 for n < m and for 4*m < n.
Refer to comment to A262704.
Example:
C(x,2)^4 = x^4*(x-1)^4 /16 = 1*C(x,2) + 78*C(x,3) + 978*C(x,4) + 4320*C(x,5) + 8460*C(x,6) + 7560*C(x,7) + 2520*C(x,8);
C(5,2)^4 = C(5,3)^4 = 10000 = 1*C(5,2) + 78*C(5,3) + 978*C(5,4) + 4320*C(5,5) = 1*C(5,3) + 252*C(5,4) + 8730*C(5,5).

Examples

			Triangle starts:
[1];
[0,  1];
[0, 14,    1];
[0, 36,   78,      1];
[0, 24,  978,    252,     1];
[0,  0, 4320,   8730,   620,    1];
[0,  0, 8460, 103820, 46890, 1290, 1];
		

Crossrefs

Row sums are, by definition, the inverse binomial transform of A005260.
Second diagonal (T_4(n+1,n)) is A058895(n+1).
Column T_4(n,2) is A122193(4,n).
Cf. A109983 (transpose of), A262704, A262706.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]):
    _T_4:=h->_P(h)^-1*_P_4(h):
    
  • PARI
    T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_4(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^4.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_4(n,m) = n! / (m!)^4 * S(m,m)(4,n).

A262706 Triangle: Newton expansion of C(n,m)^5, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 30, 1, 0, 150, 240, 1, 0, 240, 6810, 1020, 1, 0, 120, 63540, 94890, 3120, 1, 0, 0, 271170, 2615340, 740640, 7770, 1, 0, 0, 604800, 32186070, 47271840, 4029690, 16800, 1, 0, 0, 730800, 214628400, 1281612570, 518276640, 17075940, 32760, 1, 0, 0, 453600, 859992000, 18459063000, 26947757970, 4027831080, 60171300, 59040, 1
Offset: 0

Views

Author

Giuliano Cabrele, Sep 30 2015

Keywords

Comments

Triangle here T_5(n,m) is such that C(n,m)^5 = Sum_{j=0..n} C(n,j)*T_5(j,m).
Equivalently, lower triangular matrix T_5 such that
|| C(n,m)^5 || = P * T_5 = A007318 * T_5.
T_5(n,m) = 0 for n < m and for 5*m < n.
Refer to comment to A262704.
Example:
C(x,2)^5 = x^5*(x-1)^5/32 = 1*C(x,2) + 240*C(x,3) + 6810*C(x,4) + 63540*C(x,5) + 271170*C(x,6) + 604800*C(x,7) + 730800*C(x,8) + 453600*C(x,9) + 113400*C(x,10);
C(5,2)^5 = C(5,3)^5 = 100000 = 1*C(5,2) + 240*C(5,3) + 6810*C(5,4) + 63540*C(5,5) = 1*C(5,3) + 1020*C(5,4) + 94890*C(5,5).

Examples

			Triangle starts:
[1];
[0,   1];
[0,  30,      1];
[0, 150,    240,       1];
[0, 240,   6810,    1020,      1];
[0, 120,  63540,   94890,   3120,    1];
[0,   0, 271170, 2615340, 740640, 7770, 1];
		

Crossrefs

Second diagonal (T_5(n+1,n)) is A061167(n+1).
Column T_5(n,2) is A122193(5,n).
Cf. A109983 (transpose of), A262704, A262705.

Programs

  • Magma
    [&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^5: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
    
  • Mathematica
    T5[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^5, {j, 0, n}]; Table[T5[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
  • MuPAD
    // as a function
    T_5:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^5 $ j=0..n):
    // as a matrix h x h
    _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
    _P_5:=h->matrix([[binomial(n,m)^5 $m=0..h]$n=0..h]):
    _T_5:=h->_P(h)^-1*_P_5(h):
    
  • PARI
    T_5(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^5), ", ")); print())} \\ Colin Barker, Oct 01 2015

Formula

T_5(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^5.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above, then T_5(n,m) = n! / (m!)^5 * S(m,m)(5,n).
Showing 1-9 of 9 results.