A085438
a(n) = Sum_{i=1..n} binomial(i+1,2)^3.
Original entry on oeis.org
1, 28, 244, 1244, 4619, 13880, 35832, 82488, 173613, 339988, 627484, 1102036, 1855607, 3013232, 4741232, 7256688, 10838265, 15838476, 22697476, 31958476, 44284867, 60479144, 81503720, 108503720, 142831845, 186075396, 240085548, 307008964, 389321839
Offset: 1
a(10) = (90*(10^7)+630*(10^6)+1638*(10^5)+1890*(10^4)+840*(10^3)-48*(10))/5040 = 339988.
- Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085439,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(90*n^7 +630*n^6 +1638*n^5 +1890*n^4+ 840*n^3 -48*n)/ Factorial(7): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(90*n^7 + 630*n^6 + 1638*n^5 + 1890*n^4 + 840*n^3 - 48*n)/7!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
-
Vec(x*(x^4+20*x^3+48*x^2+20*x+1)/(x-1)^8 + O(x^100)) \\ Colin Barker, May 02 2014
-
a(n) = sum(i=1, n, binomial(i+1, 2)^3); \\ Michel Marcus, Nov 22 2017
A085442
a(n) = Sum_{i=1..n} binomial(i+1,2)^7.
Original entry on oeis.org
1, 2188, 282124, 10282124, 181141499, 1982230040, 15475158552, 93839322648, 467508775773, 1989944010148, 7445104711204, 25010673566116, 76686775501847, 217396817767472, 575714897767472, 1436257466526768, 3398894618986905, 7674255436599996, 16612972826599996
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085440,
A085441,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(1/823680) *n*(n+1)*(n+2)*(429*n^12 +5148*n^11 +24123*n^10 +52470*n^9 +43047*n^8 -8856*n^7 +4109*n^6 +50430*n^5 -18796*n^4 -44472*n^3 +26864*n^2 +8352*n -5568): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[Sum[Binomial[k+1,2]^7, {k,1,n}], {n,1,30}] (* G. C. Greubel, Nov 22 2017 *)
LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,2188,282124,10282124,181141499,1982230040,15475158552,93839322648,467508775773,1989944010148,7445104711204,25010673566116,76686775501847,217396817767472,575714897767472,1436257466526768},20] (* Harvey P. Dale, May 11 2022 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^7), ", ")) \\ G. C. Greubel, Nov 22 2017
A085439
a(n) = Sum_{i=1..n} binomial(i+1,2)^4.
Original entry on oeis.org
1, 82, 1378, 11378, 62003, 256484, 871140, 2550756, 6651381, 15802006, 34776742, 71791798, 140366759, 261917384, 469277384, 811379400, 1359360681, 2214396762, 3517606762, 5462416762, 8309813083, 12406965164, 18209748140, 26309748140, 37466388765, 52644875166
Offset: 1
a(15) = (2520*(15^9) +22680*(15^8) +79920*(15^7) +136080*(15^6) +107352*(15^5) +22680*(15^4) -10080*(15^3) +1728*15)/9! = 469277384.
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085440,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(2520*n^9 +22680*n^8 +79920*n^7 +136080*n^6 +107352*n^5 +22680*n^4 -10080*n^3 +1728*n)/Factorial(9): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(2520*(n^9) + 22680*(n^8) + 79920*(n^7) + 136080*(n^6) + 107352*(n^5) + 22680*(n^4) - 10080*(n^3) + 1728*n)/9!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
-
Vec(x*(x^6+72*x^5+603*x^4+1168*x^3+603*x^2+72*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
-
a(n) = sum(i=1, n, binomial(i+1, 2)^4); \\ Michel Marcus, Nov 22 2017
A085440
a(n) = Sum_{i=1..n} binomial(i+1,2)^5.
Original entry on oeis.org
1, 244, 8020, 108020, 867395, 4951496, 22161864, 82628040, 267156165, 770440540, 2022773116, 4909947484, 11150268935, 23913084560, 48796284560, 95322158736, 179163294729, 325374464580, 572984364580, 981394464580, 1639143014731, 2675722491224, 4277290592600
Offset: 1
- Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085441,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030.
-
[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n )/Factorial(11): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
Table[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!, {n,1,50}] (* G. C. Greubel, Nov 22 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^5), ", ")) \\ G. C. Greubel, Nov 22 2017
A085441
a(n) = Sum_{i=1..n} binomial(i+1,2)^6.
Original entry on oeis.org
1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408, 5240543726408, 11568062614344, 24395756421273, 49397866465794, 96443747465794, 182209868465794
Offset: 1
a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1).
Cf.
A000292,
A087127,
A024166,
A024166,
A085438,
A085439,
A085440,
A085442,
A000332,
A086020,
A086021,
A086022,
A000389,
A086023,
A086024,
A000579,
A086025,
A086026,
A000580,
A086027,
A086028,
A027555,
A086029,
A086030,
A234253.
-
[(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
-
f:= sum(binomial(1+i,2)^6,i=1..n):
seq(f, n=1..30); # Robert Israel, Nov 22 2017
-
Table[Sum[Binomial[i+1,2]^6,{i,n}],{n,20}] (* or *) LinearRecurrence[ {14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,730,47386,1047386,12438011, 98204132,580094436, 2756876772,11060642397, 38741283022,121395233038, 346594833742, 914464085783, 2254559726408},20] (* Harvey P. Dale, Jun 05 2017 *)
-
for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
A154283
Irregular triangle read by rows: T(n,k) = Sum_{i=0..k} (-1)^i * binomial(2*n+1,i) * binomial(k+2-i,2)^n, 0 <= k <= 2*(n-1).
Original entry on oeis.org
1, 1, 4, 1, 1, 20, 48, 20, 1, 1, 72, 603, 1168, 603, 72, 1, 1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1, 1, 716, 37257, 450048, 1822014, 2864328, 1822014, 450048, 37257, 716, 1, 1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, 163809288, 49258935, 6030140, 247236, 2172, 1
Offset: 1
Triangle begins:
1;
1, 4, 1;
1, 20, 48, 20, 1;
1, 72, 603, 1168, 603, 72, 1;
1, 232, 5158, 27664, 47290, 27664, 5158, 232, 1;
1, 716, 37257, 450048, 1822014, 2864328, 1822014, ...;
1, 2172, 247236, 6030140, 49258935, 163809288, 242384856, ...;
1, 6544, 1568215, 72338144, 1086859301, 6727188848, 19323413187, ...;
1, 19664, 9703890, 811888600, 21147576440, 225167210712, ... ;
...
The T(2,1) = 4 permutations of 1122 with 1 descent are 1212, 1221, 2112, 2211. - _Andrew Howroyd_, May 15 2020
- Andrew Howroyd, Table of n, a(n) for n = 1..1600 (rows 1..40)
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 12.
- Helmut Prodinger, On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs , arXiv:1102.5186 [math.CO], 2011.
-
[(&+[(-1)^j*Binomial(2*n+1,j)*Binomial(k-j+2,2)^n: j in [0..k]]): k in [0..2*n-2], n in [1..12]]; // G. C. Greubel, Jun 13 2022
-
A154283 := proc(n,k)
(1-x)^(2*n+1)*add( (l*(l+1)/2)^n*x^(l-1),l=0..k+1) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Feb 01 2013
-
p[x_, n_]= (1-x)^(2*n+1)*Sum[(k*(k+1)/2)^n*x^k, {k, 0, Infinity}]/x;
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n,10}]//Flatten
-
T(n,k)={sum(i=0, k, (-1)^i*binomial(2*n+1, i)*binomial(k+2-i, 2)^n)} \\ Andrew Howroyd, May 09 2020
-
def A154283(n,k): return sum((-1)^j*binomial(2*n+1, j)*binomial(k-j+2, 2)^n for j in (0..k))
flatten([[A154283(n,k) for k in (0..2*n-2)] for n in (1..12)]) # G. C. Greubel, Jun 13 2022
Edited by
N. J. A. Sloane, Jan 30 2014 following suggestions from
Yahia Kahloune (among other things, the signs of all terms have been reversed).
Showing 1-6 of 6 results.
Comments